RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Investigate the Effect of Potassium on Nodule Symbiosis and Uncover an HAK/KUP/KT Member, GmHAK5, Strongly Responsive to Root Nodulation in Soybean

        Liu Jianjian,Liu Jinhui,Cui Miaomiao,Chen Xiao,Liu Junli,Chen Jiadong,Chen Aiqun,Xu Guohua 한국식물학회 2022 Journal of Plant Biology Vol.65 No.6

        Leguminous plants form root nodule organs with soil rhizobia bacteria, which can fix atmospheric nitrogen (N2) and supply ammonia to the host plant. It is established that the symbiotic N fixation efficiency is substantially influenced by plant nutrients, such as molybdenum (Mo), phosphorus (P), copper (Cu), and zinc (Zn). Potassium (K+) is the most abundant cation in plant cells; however, little evidence regarding the potential link between K nutrition and symbiotic N fixation efficiency is available to date. Here, we showed that K+ deficiency reduced the efficiency of symbiotic nitrogen fixation, and inoculated with rhizobia strain USDA110 could improve plant K+ acquisition. Furthermore, we identified a potassium transporter gene (GmHAK5) that was highly expressed in the root steles and in the vasculature cells of nodules. The GmHAK5 protein was localized at the plasma membrane and could rescue the growth phenotype of yeast K+ uptake-defective mutant. The results obtained from this study provides new insights for the understanding of the potential role of K+ nutrition in modulating symbiotic N fixation in soybean.

      • KCI등재

        Comparison of Monoexponential, Biexponential, Stretched-Exponential, and Kurtosis Models of Diffusion-Weighted Imaging in Differentiation of Renal Solid Masses

        Jianjian Zhang,Shiteng Suo,Guiqin Liu,Shan Zhang,Zizhou Zhao,Jianrong Xu,Guangyu Wu 대한영상의학회 2019 Korean Journal of Radiology Vol.20 No.5

        Objective: To compare various models of diffusion-weighted imaging including monoexponential apparent diffusion coefficient (ADC), biexponential (fast diffusion coefficient [Df], slow diffusion coefficient [Ds], and fraction of fast diffusion), stretched-exponential (distributed diffusion coefficient and anomalous exponent term [α]), and kurtosis (mean diffusivity and mean kurtosis [MK]) models in the differentiation of renal solid masses. Materials and Methods: A total of 81 patients (56 men and 25 women; mean age, 57 years; age range, 30–69 years) with 18 benign and 63 malignant lesions were imaged using 3T diffusion-weighted MRI. Diffusion model selection was investigated in each lesion using the Akaike information criteria. Mann–Whitney U test and receiver operating characteristic (ROC) analysis were used for statistical evaluations. Results: Goodness-of-fit analysis showed that the stretched-exponential model had the highest voxel percentages in benign and malignant lesions (90.7% and 51.4%, respectively). ADC, Ds, and MK showed significant differences between benign and malignant lesions (p < 0.05) and between low- and high-grade clear cell renal cell carcinoma (ccRCC) (p < 0.05). α was significantly lower in the benign group than in the malignant group (p < 0.05). All diffusion measures showed significant differences between ccRCC and non-ccRCC (p < 0.05) except Df and α (p = 0.143 and 0.112, respectively). α showed the highest diagnostic accuracy in differentiating benign and malignant lesions with an area under the ROC curve of 0.923, but none of the parameters from these advanced models revealed significantly better performance over ADC in discriminating subtypes or grades of renal cell carcinoma (RCC) (p > 0.05). Conclusion: Compared with conventional diffusion parameters, α may provide additional information for differentiating benign and malignant renal masses, while ADC remains the most valuable parameter for differentiation of RCC subtypes and for ccRCC grading.

      • KCI등재

        Transcriptomic analysis provides insight into the mechanism of salinity adjustment in swimming crab Portunus trituberculatus

        Baoquan Gao,Dongfang Sun,Jianjian Lv,Xianyun Ren,Ping Liu,Jian Li 한국유전학회 2019 Genes & Genomics Vol.41 No.8

        Background Low salinity is one of the main factors limiting the distribution and survival of marine species. As a euryhaline species, the swimming crab (Portunus trituberculatus) is adaptive to relatively low salinity. However, the mechanisms underlying salinity stress responses in P. trituberculatus is not very clear. Objectives The primary objective of this study was to describe the salinity adaptation mechanism in P. trituberculatus. Methods The crabs were exposed to low salinity stress, and gill tissue was sampled at 0, 12, 36, 48 and 72 h and subjected to high throughput sequencing. Subsequently, we tested the accuracy and quality of the sequencing results, and then carried out GO and KEGG bioinformatics on the differentially expressed genes (DEG). Results Each sample yielded more than 1.1 Gb of clean data and 23 million clean reads. The process was divided into early (0–12 h), middle (12–48 h), and late phase (48–72 h). A total of 1971 (1373 up-regulated, 598 down-regulated), 1212 (364 up-regulated, 848 down-regulated), and 555 (187 up-regulated, 368 down-regulated) DEGs with annotations were identified during the three stages, respectively. DEGs were mainly associated with lipid metabolism energy metabolism, and signal transduction from the three stages, respectively. Conclusion A substantial number of genes were modified by salinity stress, along with a few important salinity acclimation pathways. This work provides valuable information on the salinity adaptation mechanism in P. trituberculatus. In addition, the comprehensive transcript sequences reported in this study provide a rich resource for identification of novel genes in this and other crab species.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼