RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean ( <i>Glycine max</i> )

        Valliyodan, Babu,Van Toai, Tara T.,Alves, Jose Donizeti,de Fá,tima P. Goulart, Patricia,Lee, Jeong Dong,Fritschi, Felix B.,Rahman, Mohammed Atiqur,Islam, Rafiq,Shannon, J. Grover,Nguyen, Henry T MDPI 2014 INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES Vol.15 No.10

        <P>Much research has been conducted on the changes in gene expression of the model plant <I>Arabidopsis</I> to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be necessary to reveal their potential to enhance flooding tolerance of soybean cultivars.</P>

      • KCI등재

        Impact of Zinc Stress on Biochemical and Biophysical Parameters in Coffea Arabica Seedlings

        Jacqueline Oliveira dos Santos,Cinthia Aparecida Andrade,Kamila Rezende Dázio de Souza,Meline de Oliveira Santos,Isabel Rodrigues Brandão,Jose Donizeti Alves,Iasminy Silva Santos 한국작물학회 2019 Journal of crop science and biotechnology Vol.22 No.3

        Zinc is an essential micronutrient for the healthy development of plants, since its insufficient and supraoptimal doses can disrupt the metabolism and biomass production. We aimed to investigate the physiological responses of coffee seedlings to Zn deficiency and excess. Six-month-old seedlings were transferred to plastic pots containing a nutrient solution. The treatments were control (0.03 ppm), zinc deficiency (0.00 ppm), and zinc excess (0.12 ppm). The evaluations were performed in leaves and roots at the beginning of the treatments and after 30 and 60 d of treatments. Zn deficiency and excess increased the production of hydrogen peroxide, antioxidant enzymes activity, ascorbate, and lipid peroxidation contents. The imbalance in zinc nutrition reduced total chlorophyll content and increased carotenoids content throughout the experimental period. Lower biomass and proline accumulation were observed only for deficient seedlings at the end of the experiment. The characteristics analyzed showed that zinc deficiency caused greater damage to the Coffea arabica plants of (Catuai cultivar) than zinc excess.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼