RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Free vibration analysis of functionally graded beams with variable cross-section by the differential quadrature method based on the nonlocal theory

        Noureddine Elmeiche,Hichem Abbad,Ismail Mechab,Fabrice Bernard 국제구조공학회 2020 Structural Engineering and Mechanics, An Int'l Jou Vol.75 No.6

        This paper attempts to investigate the free vibration of functionally graded material beams with nonuniform width based on the nonlocal elasticity theory. The theoretical formulations are established following the Euler–Bernoulli beam theory, and the governing equations of motion of the system are derived from the minimum total potential energy principle using the nonlocal elasticity theory. In addition, the Differential Quadrature Method (DQM) is applied, along with the Chebyshev-Gauss-Lobatto polynomials, in order to determine the weighting coefficient matrices. Furthermore, the effects of the nonlocal parameter, cross-section area of the functionally graded material (FGM) beam and various boundary conditions on the natural frequencies are examined. It is observed that the nonlocal parameter and boundary conditions significantly influence the natural frequencies of the functionally graded material beam cross-section. The results obtained, using the Differential Quadrature Method (DQM) under various boundary conditions, are found in good agreement with analytical and numerical results available in the literature.

      • KCI등재

        A New Trigonometric Shear Deformation Theory for Bending Analysis of Functionally Graded Plates Resting on Elastic Foundations

        Mohammed Ameur,Abdelouahed Tounsi,Ismail Mechab,El Abbes Adda Bedia 대한토목학회 2011 KSCE JOURNAL OF CIVIL ENGINEERING Vol.15 No.8

        A new trigonometric shear deformation plate theory involving only four unknown functions, as against five functions in case of other shear deformation theories, is developed for flexural analysis of Functionally Graded Material (FGM) plates resting on an elastic foundation. The theory presented is variationally consistent, has strong similarity with classical plate theory in many aspects,does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. In the analysis, the two-parameter Pasternak and Winkler foundations are considered. Material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. Governing equations are derived from the principle of virtual displacements. The accuracy of the present theory is demonstrated by comparing the results with solutions derived from other higher-order models found in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static bending behavior of functionally graded plates.

      • KCI등재후보

        Mathematical solution for free vibration of sigmoidfunctionally graded beams with varying cross-section

        Hassen Ait Atmane,Abdelouahed Tounsi,Noureddine Ziane,Ismail Mechab 국제구조공학회 2011 Steel and Composite Structures, An International J Vol.11 No.6

        This paper presents a theoretical investigation in free vibration of sigmoid functionally graded beams with variable cross-section by using Bernoulli-Euler beam theory. The mechanical properties are assumed to vary continuously through the thickness of the beam, and obey a two power law of the volume fraction of the constituents. Governing equation is reduced to an ordinary differential equation in spatial coordinate for a family of cross-section geometries with exponentially varying width. Analytical solutions of the vibration of the S-FGM beam are obtained for three different types of boundary conditions associated with simply supported, clamped and free ends. Results show that, all other parameters remaining the same, the natural frequencies of S-FGM beams are always proportional to those of homogeneous isotropic beams. Therefore, one can predict the behaviour of S-FGM beams knowing that of similar homogeneous beams.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼