RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Use of Duckweed, Bentonite and Acid to Improve Water Quality of Effluent Discharge from Abattoirs

        Goopy, J.P.,Murray, P.J.,Lisle, A.T.,Al Jassim, R.A.M. Asian Australasian Association of Animal Productio 2004 Animal Bioscience Vol.17 No.8

        Intensive animal industries create large volumes of nutrient rich effluent, which, if untreated, has the potential for substantial environmental degradation. Aquatic plants in aerobic lagoon systems have the potential to achieve inexpensive and efficient remediation of effluent, and to recover valuable nutrients that would otherwise be lost. Members of the family Lemnaceae (duckweeds) are widely used in lagoon systems, but despite their widespread use in the cleansing of sewage, only limited research has been conducted into their growth in highly eutrophic media, and little has been done to systematically distinguish between different types of media. This study examined the growth characteristics of duckweed in abattoir effluent, and explored possible ways of ameliorating the inhibitory factors to growth on this medium. A series of pot trials was conducted to test the tolerance of duckweed to abattoir effluent partially remediated by a sojourn in anaerobic fermentation ponds, both in its unmodified form, and after the addition of acid to manipulate pH, and the addition of bentonite. Unmodified abattoir effluent was highly toxic to duckweed, although duckweed remained viable and grew sub optimally in media with total ammonia nitrogen (TAN) concentrations of up to 100 mg/l. Duckweed also grew vigorously in effluent diluted 1:4 v/v, containing 56 mg TAN/L and also modified by addition of acid to decrease pH to 7 and by adding bentonite (0.5%).

      • SCIESCOPUSKCI등재

        Use of Chemical and Biological Agents to Improve Water Quality of Effluent Discharge from Abattoirs

        Goopy, J.P.,Murray, P.J.,Lisle, A.T.,Al Jassim, R.A.M. Asian Australasian Association of Animal Productio 2004 Animal Bioscience Vol.17 No.1

        Intensive animal industries create large volumes of nutrient rich effluent which, if untreated, has the potential for substantial environmental degradationand to recover valuable nutrients that would otherwise be lost. Members of the family Lemnaceae are widely used in lagoon systems, to achieve inexpensive and efficient remediation of effluent. Only limited research has been conducted into their growth in highly eutrophic media and there has been little done to systematically distinguish between different types of media. This study examined the growth characteristics of duckweed in abattoir effluent and explored possible ways of ameliorating the inhibitory factors to growth on this medium. A series of pot trials was conducted to test the tolerance of duckweed to abattoir effluent partially remediated by a sojourn in anaerobic fermentation ponds, both in its unmodified form and after the addition of acid to manipulate pH, and the addition of bentonite. Unmodified abattoir effluent was highly toxic to duckweed, even at dilutions of 3:1. Duckweed remained viable and grew sub-optimally in simplified media with total ammonia nitrogen (TAN) concentrations of up to 100 mg/L. Duckweed grew vigorously in effluent diluted 1:4 v/v, containing 56 mg TAN/L when modified by addition of acid (to decrease pH to 7) and bentonite at 0.5%. The results of this study suggest that bentonite plays an important role in modifying the toxicity of abattoir effluent to duckweed.

      • SCIESCOPUSKCI등재

        A Review on the Role of Duckweed in Nutrient Reclamation and as a Source of Animal Feed

        Goopy, J.P.,Murray, P.J. Asian Australasian Association of Animal Productio 2003 Animal Bioscience Vol.16 No.2

        The family of lemnacae colloquially known as duckweed contains the world' smallest species of flowering plants (macrophytes). Aquatic and free-floating, their most striking qualities are a capacity for explosive reproduction and an almost complete lack of fibrous material. They are widely used for reducing chemical loading in facultative sewage lagoons, but their greatest potential lies in their ability to produce large quantities of protein rich biomass, suitable for feeding to a wide range of animals, including fish, poultry and cattle. Despite these qualities there are numerous impediments to these plants being incorporated into western farming systems. Large genetically determined variations in growth in response to nutrients and climate, apparent anti-nutritional factors, concerns about sequestration of heavy metals and possible transference of pathogens raise questions about the safety and usefulness of these plants. A clear understanding of how to address and overcome these impediments needs to be developed before duckweed is widely accepted for nutrient reclamation and as a source of animal feed.

      • KCI등재

        Temporal and spatial variability in the nutritive value of pasture vegetation and supplement feedstuffs for domestic ruminants in Western Kenya

        Alice Anyango Onyango,Uta Dickhoefer,Mariana Cristina Rufino,Klaus Butterbach-Bahl,John Patrick Goopy 아세아·태평양축산학회 2019 Animal Bioscience Vol.32 No.5

        Objective: The study aimed at quantifying seasonal and spatial variations in availability and nutritive value of herbaceous vegetation on native pastures and supplement feedstuffs for domestic ruminants in Western Kenya. Methods: Samples of herbaceous pasture vegetation (n = 75) and local supplement feedstuffs (n = 46) for cattle, sheep, and goats were collected in 20 villages of three geographic zones (Highlands, Mid-slopes, Lowlands) in Lower Nyando, Western Kenya, over four seasons of one year. Concentrations of dry matter (DM), crude ash (CA), ether extract (EE), crude protein (CP), neutral detergent fibre (NDF), gross energy (GE), and minerals were determined. Apparent total tract organic matter digestibility (dOM) was estimated from in vitro gas production and proximate nutrient concentrations or chemical composition alone using published prediction equations. Results: Nutrient, energy, and mineral concentrations were 52 to 168 g CA, 367 to 741 g NDF, 32 to 140 g CP, 6 to 45 g EE, 14.5 to 18.8 MJ GE, 7.0 to 54.2 g potassium, 0.01 to 0.47 g sodium, 136 to 1825 mg iron, and 0.07 to 0.52 mg selenium/kg DM. The dOM was 416 to 650 g/kg organic matter but differed depending on the estimation method. Nutritive value of pasture herbage was superior to most supplement feedstuffs, but its value strongly declined in the driest season. Biomass yields and concentrations of CP and potassium in pasture herbage were highest in the Highlands amongst the three zones. Conclusion: Availability and nutritive value of pasture herbage and supplement feedstuffs greatly vary between seasons and geographical zones, suggesting need for season- and region-specific feeding strategies. Local supplement feedstuffs partly compensate for nutritional deficiencies. However, equations to accurately predict dOM and improved knowledge on nutritional characteristics of tropical ruminant feedstuffs are needed to enhance livestock production in this and similar environments.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼