RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Molecular Cloning and mRNA Expression of the Porcine Insulin-responsive Glucose Transporter (GLUT4)

        Zuo, Jianjun,Dai, Fawen,Feng, Dingyuan,Cao, Qingyun,Ye, Hui,Dong, Zemin,Xia, Weiguang Asian Australasian Association of Animal Productio 2010 Animal Bioscience Vol.23 No.5

        Insulin-responsive glucose transporter 4 (GLUT4) is a member of the glucose transporter family and mainly presents in skeletal muscle and adipose tissue. To clarify the molecular structure of porcine GLUT4, RACE was used to clone its cDNA. Several cDNA clones corresponding to different regions of GLUT4 were obtained by amplifying reverse-transcriptase products of total RNA extracted from Landrace porcine skeletal muscles. Nucleotide sequence analysis of the cDNA clones revealed that porcine GLUT4 cDNA was composed of 2,491 base pairs with a coding region of 509 amino acids. The deduced amino acid sequence was over 90% identical to human, rabbit and cattle GLUT4. The tissue distribution of GLUT4 was also examined by Real-time RT-PCR. The mRNA expression abundance of GLUT4 was heart>liver, skeletal muscle and brain>lung, kidney and intestine. The developmental expression of GLUT4 and insulin receptor (IR) was also examined by Real-time RT-PCR using total RNA extracted from longissimus dorsi (LM), semimembranosus (SM), and semitendinosus (SD) muscle of Landrace at the age of 1, 7, 30, 60 and 90 d. It was shown that there was significant difference in the mRNA expression level of GLUT4 in skeletal muscles of Landrace at different ages (p<0.05). The mRNA expression level of IR also showed significant difference at different ages (p<0.05). The developmental change in the mRNA expression abundance of GLUT4 was similar to that in IR, and both showed a higher level at birth and 30 d than at other ages. However, there was no significant tissue difference in the mRNA expression of GLUT4 or IR (p>0.05). These results showed that the nucleotide sequence of the cDNA clones was highly identical with human, rabbit and cattle GLUT4 and the developmental change of GLUT4 mRNA in skeletal muscles was similar to that of IR, suggesting that porcine GLUT4 might be an insulin-responsive glucose transporter. Moreover, the tissue distribution of GLUT4 mRNA showed that GLUT4 might be an important nutritional transporter in porcine skeletal muscles.

      • SCIESCOPUSKCI등재

        Cloning and Distribution of Facilitative Glucose Transporter 2 (SLC2A2) in Pigs

        Zuo, Jianjun,Huang, Zhiyi,Zhi, Aimin,Zou, Shigeng,Zhou, Xiangyan,Dai, Fawen,Ye, Hui,Feng, Dingyuan Asian Australasian Association of Animal Productio 2010 Animal Bioscience Vol.23 No.9

        Glucose is the main energy source for mammalian cells and its absorption is co-mediated by two different families of glucose transporters, sodium/glucose co-transporters (SGLTs) and facilitative glucose transporters (GLUTs). Here, we report the cloning and tissue distribution of porcine GLUT2. The GLUT2 was cloned by RACE and its cDNA was 2,051 bp long (GenBank accession no. EF140874). An AAATAA consensus sequence at nucleotide positions 1936-1941 was located upstream of the poly $(A)^+$ tail. Open reading frame analysis suggested that porcine GLUT2 contained 524 amino acids, with molecular weight of 57 kDa. The amino acid sequence of porcine GLUT2 was 87% and 79.4% identical with human and mouse GLUT2, respectively. GLUT2 mRNA was detected at highest level in porcine liver, at moderate levels in the small intestine and kidney, and at low levels in the brain, lung, muscle and heart. In the small intestine, the highest level was in the jejunum. In conclusion, the mRNA expression of GLUT2 was not only differentially regulated by age, but also differentially distributed along the small intestine of piglets, which may be related to availability of different intestinal luminal substrate concentrations resulting from different food sources and digestibility.

      • KCI등재

        Efficacy of combination of endo-xylanase and xylan-debranching enzymes in improving cereal bran utilization in piglet diet

        Wang Weiwei,Zheng Dawen,Zhang Zhenzhen,Ye Hui,Cao Qingyun,Zhang Changming,Dong Zemin,Feng Dingyuan,Zuo Jianjun 아세아·태평양축산학회 2022 Animal Bioscience Vol.35 No.11

        Objective: This study was aimed to explore the efficacy of combination of endo-xylanase (Xyn) and xylan-debranching enzymes (arabinofuranosidase, Afd and feruloyl esterase, FE) in improving utilization of bran in piglet diet. Methods: In vitro experiments were firstly conducted to examine the enzymological properties of Xyn, Afd, and FE, concurrent with their effect on degradation of arabinoxylan (Abx) in bran. In vivo experiment was then implemented by allocating two hundred and seventy 35-d-old postweaning piglets into 3 groups (6 replicates/group), which received bran-containing diet supplemented with Xyn (1,600 U/kg) or its combination with Afd (0.8 U/kg) and FE (4 U/kg) or without enzyme. Results: Both Xyn, Afd, and FE are relatively stable against the changes in temperature and pH value. Combining Xyn with Afd and FE had a superiority (p<0.05) over Xyn alone and its combination with Afd or FE in promoting (p<0.05) degradation of Abx in different brans. Combined treatment with Xyn, Afd, and FE was more beneficial than Xyn alone to induce increasing trends (p<0.10) of average daily gain, final body weight and feed efficiency of piglets fed bran-containing diet. Moreover, combination of Xyn, Afd, and FE showed advantages (p<0.05) over Xyn alone in causing reductions (p<0.05) in diarrhea rate and cecal pH value, concurrent with increases (p<0.05) in cecal and colonic acetic acid and total volatile fatty acid concentrations, as well as cecal butyric acid concentration of piglets fed brancontaining diet. Conclusion: Combining Xyn with Afd and FE was more beneficial than Xyn alone in promoting degradation of Abx in bran, along with growth performance and intestinal volatile fatty acid profile of piglets received bran-containing diet. Thereby, combination of Xyn, Afd, and FE had a superior efficacy relative to Xyn alone in improving application of cereal bran in piglet diet. Objective: This study was aimed to explore the efficacy of combination of endo-xylanase (Xyn) and xylan-debranching enzymes (arabinofuranosidase, Afd and feruloyl esterase, FE) in improving utilization of bran in piglet diet.Methods: <i>In vitro</i> experiments were firstly conducted to examine the enzymological properties of Xyn, Afd, and FE, concurrent with their effect on degradation of arabinoxylan (Abx) in bran. <i>In vivo</i> experiment was then implemented by allocating two hundred and seventy 35-d-old postweaning piglets into 3 groups (6 replicates/group), which received bran-containing diet supplemented with Xyn (1,600 U/kg) or its combination with Afd (0.8 U/kg) and FE (4 U/kg) or without enzyme.Results: Both Xyn, Afd, and FE are relatively stable against the changes in temperature and pH value. Combining Xyn with Afd and FE had a superiority (p<0.05) over Xyn alone and its combination with Afd or FE in promoting (p<0.05) degradation of Abx in different brans. Combined treatment with Xyn, Afd, and FE was more beneficial than Xyn alone to induce increasing trends (p<0.10) of average daily gain, final body weight and feed efficiency of piglets fed bran-containing diet. Moreover, combination of Xyn, Afd, and FE showed advantages (p<0.05) over Xyn alone in causing reductions (p<0.05) in diarrhea rate and cecal pH value, concurrent with increases (p<0.05) in cecal and colonic acetic acid and total volatile fatty acid concentrations, as well as cecal butyric acid concentration of piglets fed bran-containing diet.Conclusion: Combining Xyn with Afd and FE was more beneficial than Xyn alone in promoting degradation of Abx in bran, along with growth performance and intestinal volatile fatty acid profile of piglets received bran-containing diet. Thereby, combination of Xyn, Afd, and FE had a superior efficacy relative to Xyn alone in improving application of cereal bran in piglet diet.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼