RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Analysis and design for stability in the U.S. - An overview

        Eric M. Lui,Ma Ge 국제구조공학회 2005 Steel and Composite Structures, An International J Vol.5 No.2

        This paper describes the theoretical background and underlying principles behind the American Institute of Steel Construction Load and Resistance Factor Design (AISC LRFD) Specification for the analysis and stability design of steel frames. Various analysis procedures that can take into consideration the effects of member instability, frame instability, member-frame interaction, geometric imperfections, and inelasticity are reviewed. Design approaches by which these factors can be incorporated in the design of steel moment frames are addressed. Current specification guidelines for member and frame design in the U.S. are summarized. Examples are given to illustrate the validity of the design equations. Some future directions for the analysis and stability design of steel frames are discussed.

      • KCI등재후보

        Behavior and design of steel I-beams with inclined stiffeners

        Yang Yang,Eric M. Lui 국제구조공학회 2012 Steel and Composite Structures, An International J Vol.12 No.3

        This paper presents an investigation of the effect of inclined stiffeners on the load-carrying capacity of simply-supported hot-rolled steel I-beams under various load conditions. The study is carried out using finite element analysis. A series of beams modeled using 3-D solid finite elements with consideration of initial geometric imperfections, residual stresses, and material nonlinearity are analyzed with and without inclined stiffeners to show how the application of inclined stiffeners can offer a noticeable increase in their lateral-torsional buckling (LTB) capacity. The analysis results have shown that the amount of increase in LTB capacity is primarily dependent on the location of the inclined stiffeners and the lateral unsupported length of the beam. The width, thickness and inclination angle of the stiffeners do not have as much an effect on the beam’s lateral-torsional buckling capacity when compared to the stiffeners’ location and beam length. Once the optimal location for the stiffeners is determined, parametric studies are performed for different beam lengths and load cases and a design equation is developed for the design of such stiffeners. A design example is given to demonstrate how the proposed equation can be used for the design of inclined stiffeners not only to enhance the beam’s bearing capacity but its lateral-torsional buckling strength.

      • KCI등재

        Cross-Section Properties and Elastic Lateral-Torsional Buckling Capacity of Steel Delta Girders

        Omar Y. El Masri,Eric M. Lui 한국강구조학회 2019 International Journal of Steel Structures Vol.19 No.3

        In this paper, the behavior of slender steel delta girders (SDG) is investigated both analytically and numerically. In the analytical analysis, closed-form equations for cross-section properties of SDG are derived. They are then compared with solutions obtained numerically. Using these cross-section properties, the theoretical elastic lateral-torsional buckling (LTB) strength of these girders are determined and compared with results obtained from a fi nite element analysis. The results show that the theoretical LTB equation derived for general open monosymmetric I-sections can be applied to these delta girders. Additionally, it is shown that a simplifi ed expression for the coeffi cient of monosymmetry x derived for I-sections can be used in the computation of LTB strength for SDG. A parametric study is then performed to demonstrate the eff ectiveness of SDG in achieving a favorable strength-to-weight ratio when compared to standard I-section members. Based on the results of this parametric study, it is recommended that the height and width of the delta region of the cross-section be equal to two-fi fth the height of the web and three-quarter the width of the compression fl ange, respectively.

      • KCI등재

        Experimental study of the behavior of beam-column connections with expanded beam flanges

        Hongwei Ma,Jiwei Wang,Eric M. Lui,Zeqing Wan,Kun Wang 국제구조공학회 2019 Steel and Composite Structures, An International J Vol.31 No.3

        This paper describes an experimental study of steel beam-column connections with or without expanded beam flanges with different geometries. The objectives of this study are to elucidate the cyclic behavior of these connections, identify the location of the plastic hinge zone, and provide useful test data for future numerical simulations. Five connection specimens are designed and tested under cyclic load. The test setup consists of a beam and a column connected together by a connection with or without expanded beam flanges. A constant axial force is applied to the column and a time varying point load is applied to the free end of the beam, inducing shear and moment in the connection. Because the only effect to be studied in the present work is the expanded beam flange, the sizes of the beam and column as well as the magnitude of the axial force in the column are kept constant. However, the length, width and shape of the expanded beam flanges are varied. The responses of these connections in terms of their hysteretic behavior, failure modes, stiffness degradation and strain variations are experimentally obtained and discussed. The test results show that while the influence of the expanded beam flanges on hysteretic behavior, stiffness degradation and energy dissipation capacity of the connection is relatively minor, the size of the expanded beam flanges does affect the location of the plastic hinge zone and strain variations in these beam-column joints. Furthermore, in terms of ductility, moment and rotational capacities, all five connections behave well. No weld fracture or premature failure occurs before the formation of a plastic hinge in the beam.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼