RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        An Octree-Based Two-Step Method of Surface Defects Detection for Remanufacture

        Yan He,Wen Ma,Yufeng Li,Chuanpeng Hao,Yulin Wang,Yan Wang 한국정밀공학회 2023 International Journal of Precision Engineering and Vol.10 No.2

        Accurate and quick detection has a significant bearing on overall productivity of remanufacture. 3D scanning technologies have been widely applied in defects detection by comparing the damaged model with the nominal model. In this process, a huge amount of point cloud data is required to ensure detection accuracy whereas resulting in large storage space and long processing time of detection. This paper proposed an efficient two-step method based on octree to detect defects accurately and quickly for remanufacturing. In this method, the damaged point cloud and the nominal point cloud are first registered. Then a two-step detection approach is developed to extract the surface defects, coarse detection and detailed extraction, where the octree method is applied to create an effective topology of discrete points and perform the Boolean operation for defects extraction. In coarse detection, rough location and size information of the defects are acquired from the whole point cloud data. Based on coarse detected boundary box containing defects, the detailed extraction step is applied to extract corresponding defects shape accurately. The feasibility of proposed method was validated by using a case to detect defects of a damaged turbine blade and the detection results can be used to generate restoration tool path. The results show that the proposed method outperforms state-of-art defects detection methods, which can reduce time by 74.03% and reduce error by 36.86%, respectively.

      • KCI등재

        Effects of Pressure and Deposition Time on the Characteristics of In2Se3 Films Grown by Magnetron Sputtering

        Yong Yan,Shasha Li,Yufeng Ou,Yaxin Ji,Zhou Yu,Lian Liu,Chuanpeng Yan,Yong Zhang,Yong Zhao 대한금속·재료학회 2014 ELECTRONIC MATERIALS LETTERS Vol.10 No.6

        Crystalline In2Se3 films were fabricated by magnetron sputtering from a sintered In2Se3-compound target and the effects of the deposition parameters, including the working pressure and deposition time, on the phase composition, structure, morphology, and optical properties were clarified. Single-phase κ-In2Se3 was prepared at 4.0 Pa, but γ-In2Se3 was recognized when the working pressure was lower than 4.0 Pa. The optical transmittance of the films decreased to 45% and the optical band gap varied from 2.9 to 2.0 eV with increasing film thickness from 80 to 967 nm. Metal-semiconductor-metal (MSM) photodetectors based on γ-In2Se3 thin films with various thicknesses were also fabricated. The result of photosensitivity research on such MSM photodetectors suggests that it may be impossible to fabricate wide-absorption-range MSM devices by just using a single material (γ-In2Se3) because of spatial potential fluctuations in the layers.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼