RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Anaerobic membrane bioreactors for biohydrogen production: Recent developments, challenges and perspectives

        Aslam, Muhammad,Ahmad, Rizwan,Yasin, Muhammad,Khan, Asim Laeeq,Shahid, Muhammad Kashif,Hossain, Shakhawat,Khan, Zakir,Jamil, Farrukh,Rafiq, Sikander,Bilad, Muhammad Roil,Kim, Jeonghwan,Kumar, Gopalakr Elsevier 2018 Bioresource technology Vol.269 No.-

        <P><B>Abstract</B></P> <P>Biohydrogen as one of the most appealing energy vector for the future represents attractive avenue in alternative energy research. Recently, variety of biohydrogen production pathways has been suggested to improve the key features of the process. Nevertheless, researches are still needed to overcome remaining barriers to practical applications such as low yields and production rates. Considering practicality aspects, this review emphasized on anaerobic membrane bioreactors (AnMBRs) for biological hydrogen production. Recent advances and emerging issues associated with biohydrogen generation in AnMBR technology are critically discussed. Several techniques are highlighted that are aimed at overcoming these barriers. Moreover, environmental and economical potentials along with future research perspectives are addressed to drive biohydrogen technology towards practicality and economical-feasibility.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Anaerobic membrane bioreactor technology for biohydrogen production is overviewed. </LI> <LI> Enhancement of biohydrogen yield and generation rates via various strategies is discussed. </LI> <LI> Techno-economic and environmental impacts of this approach are addressed. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects

        Khalid, Azqa,Aslam, Muhammad,Qyyum, Muhammad Abdul,Faisal, Abrar,Khan, Asim Laeeq,Ahmed, Faisal,Lee, Moonyong,Kim, Jeonghwan,Jang, Nulee,Chang, In Seop,Bazmi, Aqeel Ahmed,Yasin, Muhammad Elsevier 2019 RENEWABLE & SUSTAINABLE ENERGY REVIEWS Vol.105 No.-

        <P><B>Abstract</B></P> <P>Bioethanol has garnered a great interest as a potential energy source, mainly due to its sustainable and green nature. Generally, bioethanol is produced through the microbial conversion of biomass and biomass derived syngas. However, the dehydration and purification steps for achieving fuel-grade ethanol from the microbial production process consume tremendous amounts of energy. This high energy consumption limits the feasibility of microbial ethanol production on the commercial scale. In this context, selection of an optimal technology for product separation is essential for successful commercialization of microbially produced bioethanol. This article presents the recent developments in dehydration and purification technologies for bioethanol production using distillation and membrane based separation. Distillation and pervaporation are analyzed on the basis of the overall energy requirement, consumption, and economics. Pervaporation-assisted distillation approaches are also examined from the perspective of process systems engineering, including factors affecting the system performance. Furthermore, the role of simulation in technological development along with available mathematical models is discussed, and commercial status of pervaporation based separation is presented. Finally, the current status of the existing technology, challenges, and future research directions are identified from the perspective of achieving process sustainability on the industrial scale. Economic comparison between distillation and different hybrid schemes revealed that integrating distillation with membrane based separation techniques reduce the bioethanol production cost. Moreover, hybrid schemes that combine distillation with pervaporation, and steam stripping with vapor permeation are proved to be the best combinations for the cheapest bioethanol production.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Recent developments in dehydration of bioethanol are presented. </LI> <LI> Conventional and membrane-based technologies are compared. </LI> <LI> Integrating pervaporation with distillation reduce the bioethanol production cost. </LI> <LI> The most economical hybrid schemes for bioethanol separation is identified. </LI> <LI> Operational optimization and thermodynamic evaluation of hybrid processes are required. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • KCI등재

        Effect of sodium butyrate on performance, immune status, microarchitecture of small intestinal mucosa and lymphoid organs in broiler chickens

        Arbab Sikandar,Hafsa Zaneb,Muhammad Younus,Saima Masood,Asim Aslam,Farina Khattak,Saima Ashraf,Muhammad Shahbaz Yousaf,Habib Rehman 아세아·태평양축산학회 2017 Animal Bioscience Vol.30 No.5

        Objective: This study aimed to examine the effect of sodium butyrate (SB) on growth performance, immune status, organs weights, and microarchitecture of lymphoid organs and small intestine. Methods: A total of 120, 1-d-old broiler chicks were distributed into the following four treatment groups: corn-soy based basal diet (BD) without supplement (control), or the same BD supplemented with 0.1 g/kg zinc bacitracin (ZnB), 0.5 g/kg SB (SB-0.5), or 1.0 g/kg SB (SB-1), respectively. Six birds/group were killed on d-21 and d-35, and samples were collected. Results: Cell-mediated immune response at 48 h post-Phytohemagglutinin-P injection, and antibody titer against Newcastle disease vaccine and sheep red blood cells on d-35 was noted higher (p<0.05) in SB-1 compared to ZnB and control. Lower (p<0.05) feed conversion ratio (FCR) was attained by the supplemented groups. Thymus and spleen weighed more (p<0.05) in SB-1, and bursa registered more (p<0.05) weight in both SB groups compared to control. On d-21, areas of thymus medulla and spleen germinal centers were noted higher (p<0.05) in SB-1 group. The villus height and villus surface area increased (p<0.05) in duodenum and jejunum in both SB groups on d-21, and in SB-1 on d-35, respectively compared to ZnB and control. On d-21, number of goblet cells containing mucins of acidic nature increased (p<0.05) in all the segments of small intestines in SB-1 group compared to control, and on d-35 in ileum compared to other groups. Conclusion: In conclusion, SB improved growth performance and immunity as well as modulated morphology of lymphoid organs and gut mucosa in broiler chickens.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼