RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Numerical investigation of web crippling strength in cold-formed stainless steel lipped channels with web openings subjected to interior-two-flange loading condition

        Amir M. Yousefi,Asraf Uzzaman,James B.P. Lim,G. Charles Clifton,Ben Young 국제구조공학회 2017 Steel and Composite Structures, An International J Vol.23 No.3

        In cold-formed stainless steel lipped channel-sections, use of web openings for service purposes are becoming increasingly popular. Web openings, however, result in the sections becoming more susceptible to web crippling. This paper presents a finite element investigation into the web crippling strength of cold-formed stainless steel lipped channel-sections with circular web openings under the interior-two-flange (ITF) loading condition. The cases of web openings located centred and offset to the bearing plates are considered in this study. In order to take into account the influence of the circular web openings, a parametric study involving 2,220 finite element analyses was performed, covering duplex EN1.4462, austenitic EN1.4404 and ferritic EN1.4003 stainless steel grades. From the results of the parametric study, strength reduction factor equations are proposed. The strengths obtained from reduction factor equations are first compared to the strengths calculated from the equations recently proposed for cold-formed carbon steel lipped channel-sections. It is demonstrated that the strength reduction factor equations proposed for cold-formed carbon steel are unconservative for the stainless steel grades by up to 17%. New coefficients for web crippling strength reduction factor equations are then proposed that can be applied to all three stainless steel grades.

      • KCI등재

        Strength and stiffness of cold-formed steel portal frame joints using quasi-static finite element analysis

        Chia Mohammadjani,Amir M. Yousefi,Shu Qing Cai,,G. Charles Clifton,James B.P. Lim 국제구조공학회 2017 Steel and Composite Structures, An International J Vol.25 No.6

        This paper describes a quasi-static finite element analysis, which uses the explicit integration method, of the apex joint of a cold-formed steel portal frame. Such cold-formed steel joints are semi-rigid as a result of bolt-hole elongation. Furthermore, the channel-sections that are being connected have a reduced moment capacity as a result of a bimoment. In the finite element model described, the bolt-holes and bolt shanks are all physically modelled, with contact defined between them. The force-displacement curves obtained from the quasi-static analysis are shown to be similar to those of the experimental test results, both in terms of stiffness as well as failure load. It is demonstrated that quasi-static finite element analysis can be used to predict the behavior of cold-formed steel portal frame joints and overcome convergence issues experienced in static finite element analysis.

      • A new hybrid model for MR elastomer device and parameter identification based on improved FOA

        Yang Yu,Amir M. Yousefi,Kefu Yi,Jianchun Li,Weiqiang Wang,Xinxiu Zhou 국제구조공학회 2021 Smart Structures and Systems, An International Jou Vol.28 No.5

        A new hysteresis model based on curve fitting method is presented in this work to portray the greatly nonlinear and hysteretic relationships between shear force and displacement responses of the magnetorheological (MR) elastomer base isolator. Compared with classical hysteresis models such as Bouc-Wen or LuGre friction model, the proposed model combines the hyperbolic sine function and Gaussian function to model the hysteretic loops of the device responses, contributing to a great decline of model parameters. Then, an improved fruit fly optimization algorithm (FOA) is proposed to optimize the model parameters, in which a self-adaptive step is employed rather than the fixed step to balance the global and local optimum search abilities of algorithm. Finally, the experimental results of the device under both harmonic and random excitations are used to verify the performance of the proposed hybrid model and parameter identification algorithm with the satisfactory results.

      • KCI등재

        Web crippling strength of cold-formed stainless steel lipped channel-sections with web openings subjected to interior-one-flange loading condition

        James B.P. Lim,Amir M. Yousefi,Asraf Uzzaman,Ying Lian,G. Charles Clifton,Ben Young 국제구조공학회 2016 Steel and Composite Structures, An International J Vol.21 No.3

        In cold-formed stainless steel lipped channel-sections, web openings are becoming increasingly popular. Such openings, however, result in the sections becoming more susceptible to web crippling, especially under concentrated loads applied near the web opening. This paper presents the results of a finite element parametric study into the effect of circular web openings on the web crippling strength of cold-formed stainless steel lipped channelsections for the interior-one-flange (IOF) loading condition. This involves a bearing load applied to the top flange of a length of member, away from the end supports. The cases of web openings located centred beneath the bearing load (i.e. beneath the bearing plate delivering the load) and offset to the bearing plate, are considered. Three grades of stainless steel are considered: duplex EN1.4462, austenitic EN1.4404 and ferretic EN1.4003. In total, 2218 finite element models were analyzed. From the results of the parametric study, strength reduction factors for load bearing capacity are determined, where these reduction factors are applied to the bearing capacity calculated for a web without openings, to take account the influence of the web openings. The strength reduction factors are first compared to equations recently proposed for cold-formed carbon steel lipped channel-sections. It is shown that for the case of the duplex grade, the strength reduction factor equations for cold-formed carbon steel are conservative but only by 2%. However, for the cases of the austentic and ferritic grades, the cold-formed carbon steel equations are around 9% conservative. New strength reduction factor equations are proposed for all three stainless steel grades.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼