RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effect of Zn2+ and F- Co-Modification on the Structure and Electrochemical Performance of Li4Ti5O12 Anode Material

        Aijia Wei,Wen Li,Lihui Zhang,Xiaohui Li,Xue Bai,Zhenfa Liu 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2017 NANO Vol.12 No.5

        Zn2+ and F- ions are successfully used to modify pure Li4Ti5O12 via a co-precipitation method followed by calcination at 400℃ for 5 h in an Ar atmosphere in order to further investigate the reaction mechanism of the fluoride modification process. Zn2+ and F- co-modified Li4Ti5O12 samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. After the modification process, no ZnF2 coating layer is formed on the surface of Li4Ti5O12, instead, F- ions react with Li4Ti5O12 to generate a new phase, composed of a small amount of anatase TiO2, rutile TiO2, LiF, and Zn2+ ions are suspected to form a ZnO coating layer on Li4Ti5O12 particles. The electrolyte reduction decomposition is suppressed in Zn2+ and F- co-modified Li4Ti5O12 due to the ZnO coating layer. 1 wt.% Zn2+ and F- co-modified Li4Ti5O12 exhibits the best rate capability, which leads to a charge capacity of 236.7, 227.8, 222.1, 202.7, 188.9 and 150.7 mAh g -1 at 0.2C, 0.5C, 1C, 3C, 5C and 10C, respectively, between 0 V and 3 V. Furthermore, 1 wt.% Zn2+ and F- comodified Li4Ti5O12 exhibits 96.0% charge capacity retention at 3C rate after 200 cycles, which is significantly higher than that of pure Li4Ti5O12 (78.4%).

      • Unequal depth beam to column connection joint

        Ben Mou,Aijia Zhang,Wei Pan 국제구조공학회 2023 Steel and Composite Structures, An International J Vol.46 No.6

        This paper presents the seismic performance of seven beam-column joints with an eccentricity between beam depths under cyclic loadings. The failure modes of the panel zone were divided into two types. One was the shear force failure that appeared in the entire panel zone (SFEPZ), the other was the shear force failure that appeared in the partial panel zone (SFPPZ). Seven finite element models were established using multi-scale methods. Compared with the experimental specimens, the hysteretic loops exhibited a similar trend. The multi-scale models could accurately simulate the experimental results. Furthermore, the calculation formulas of yield and plastic shear capacity of unequal-depth joints with outer annular stiffener were proposed.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼