RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Influence of sisal fibres and rubber latex on the engineering properties of sand concrete

        Oday Z. Jaradat,Karima Gadri,Bassam A. Tayeh,Abdelhamid Guettalaa 국제구조공학회 2021 Structural Engineering and Mechanics, An Int'l Jou Vol.80 No.1

        This experimental study aims to investigate the properties of sand concrete (SC) by using sisal fibres and latex in various fields in construction. Sisal fibres were applied at four ratios of 0.05%, 0.10%, 0.15% and 0.20%, while liquid latex was replaced with three ratios of 15%, 25% and 35%. In this context, ideal percentages of sisal fibre (0.1% F) and latex (35% L) were combined in a single cement matrix. For each percentage, tests on flow, density, compressive strength, flexural strength, ultrasonic pulse velocity, modulus of elasticity, water accessible porosity, water absorption and shrinkage were performed on fresh and hardened SC. Scanning electron microscopy (SEM) was also conducted for microstructure analysis. Results indicate that adding latex emulsion to SC containing sisal fibres increased the adhesion of the fibres to the cement matrix, which contributed to the increase in flexural strength and the decrease in shrinkage. This condition also helped reduce the porosity and water absorption of latex-modified SC with sisal fibres compared with SC that contained fibres. The improvement occurred in the properties that constitute an obstacle to the widespread use of SC. Thus this improvement has practical implications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼