RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A Review of Industrial MIMO Decoupling Control

        Lu Liu,Siyuan Tian,Dingyu Xue,Tao Zhang,YangQuan Chen,Shuo Zhang 제어·로봇·시스템학회 2019 International Journal of Control, Automation, and Vol.17 No.5

        In recent decades, MIMO (Multi-Input-Multi-Output) systems become more and more widely used inindustrial applications. A variety of decoupling control algorithms have been studied in the literature. Therefore,a review of the most extensively applied coupling interaction analysis and decoupler design methods for industrialprocesses is necessary to be carried out. In this paper, in order to benefit researchers and engineers with differentacademic backgrounds, the scattered coupling interaction analysis and decoupling algorithms are collectedand divided into different categories with their characteristics, application domains and informative comments forselection. Moveover, some frequently concerned problems of decoupling control are also discussed.

      • KCI등재

        Different QoS Constraint Virtual SDN Embedding under Multiple Controllers

        ( Zhiyuan Zhao ),( Xiangru Meng ),( Siyuan Lu ),( Yuze Su ) 한국인터넷정보학회 2018 KSII Transactions on Internet and Information Syst Vol.12 No.9

        Software-defined networking (SDN) has emerged as a promising technology for network programmability and experiments. In this work, we focus on virtual network embedding in multiple controllers SDN network. In SDN virtualization environment, virtual SDN networks (vSDNs) operate on the shared substrate network and managed by their each controller, the placement and load of controllers affect vSDN embedding process. We consider controller placement, vSDN embedding, controller adjustment as a joint problem, together considering different quality of service (QoS) requirement for users, formulate the problem into mathematical models to minimize the average time delay of control paths, the load imbalance degree of controllers and embedding cost. We propose a heuristic method which places controllers and partitions control domains according to substrate SDN network, embeds different QoS constraint vSDN requests by corresponding algorithms, and migrates switches between control domains to realize load balance of controllers. The simulation results show that the proposed method can satisfy different QoS requirement of tenants, keep load balance between controllers, and work well in the acceptance ratio and revenue to cost ratio for vSDN embedding.

      • KCI등재

        Tailoring physical and chemical microenvironments by polyether-amine in blended membranes for efficient CO2 separation

        Xia Lv,Xueqin Li,Lu Huang,Siyuan Ding,Yin Lv,Jinli Zhang 한국화학공학회 2022 Korean Journal of Chemical Engineering Vol.39 No.3

        Pebax® MH 1657 (Pebax)-based blend membranes with different polyether-amine (PEA) loadings were designed and fabricated for efficient CO2 separation. The CO2 separation performance of Pebax/PEA blend membranes was greatly improved in comparison with that of pure membranes. This was mainly because the introduced PEA tailored the physical and chemical microenvironments in blend membranes. Specifically, PEA was a liquid-like additive, which was beneficial to reduce the mass transfer resistance of gases and increase CO2 permeability. Meanwhile, PEA contained amino groups that acted as mobile carriers to tailor the chemical microenvironment in blend membranes. The mobile carriers preferentially reacted reversibly with CO2 molecules, facilitating CO2 transport in membranes. Compared with CO2/CH4 separation performance of pure Pebax membrane, CO2 permeability and CO2/CH4 separation factor of Pebax/PEA-3 increased by 144.8% and 29.4%, respectively. This study suggests that PEA is a promising membrane material for tailoring the physical and chemical microenvironments in blend membranes for efficient CO2 separation.

      • Studies on control mechanism and performance of a novel pneumatic-driven active dynamic vibration absorber

        Kunjie Rong,Xinghua Li,Zheng Lu,Siyuan Wu 국제구조공학회 2023 Structural Engineering and Mechanics, An Int'l Jou Vol.87 No.2

        To efficiently attenuate seismic responses of a structure, a novel pneumatic-driven active dynamic vibration absorber (PD-ADVA) is proposed in this study. PD-ADVA aims to realize closed-loop control using a simple and intuitive control algorithm, which takes the structure velocity response as the input signal and then outputs an inverse control force to primary structure. The corresponding active control theory and phase control mechanism of the system are studied by numerical and theoretical methods, the system’s control performance and amplitude-frequency characteristics under seismic excitations are explored. The capability of the proposed active control system to cope with frequency-varying random excitation is evaluated by comparing with the optimum tuning TMD. The analysis results show that the control algorithm of PD-ADVA ensures the control force always output to the structure in the opposite direction of the velocity response, indicating that the presented system does not produce a negative effect. The phase difference between the response of uncontrolled and controlled structures is zero, while the phase difference between the control force and the harmonic excitation is π, the theoretical and numerical results demonstrate that PD-ADVA always generates beneficial control effects. The PD-ADVA can effectively mitigate the structural seismic responses, and its control performance is insensitive to amplitude. Compared with the optimum tuning TMD, PD-ADVA has better control performance and higher system stability, and will not have negative effects under seismic wave excitations.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼