RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Cystic fibrosis gene therapy, novel strategies for improving long-term therapeutic efficacy

        ( Juliette Delhove ),( Patricia Cmielewski ),( Nigel Farrow ),( Chantelle Carpentieri ),( Alexandra Sarah Ann Mc Carron ),( Nicole Reyne ),( Nathan Rout-pitt ),( Bernadette Boog ),( Martin Donnelley ) 대한결핵 및 호흡기학회 2019 대한결핵 및 호흡기학회 추계학술대회 초록집 Vol.127 No.-

        Background: Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) protein. CF results in airway surface dehydration and the inability to clear mucus, which leads to chronic infections, inflammation, and premature death most commonly due to respiratory failure. Gene therapy can be used to insert a correct copy of the CFTR gene into the genome to restore organ function by fixing the underlying genetic condition independent of CFTR mutation type. Lentiviruses (LV) are a promising gene therapy vehicle as they stably integrate the therapeutic gene into the genome. To achieve permanent genetic correction, we are focusing on developing vectors to improve cell targeting and specificity to overcome the current challenges of CF gene therapy. Methods: LV vectors containing reporter genes (LacZ, Luc-GFP) or epitope-tagged CFTR were developed and tested in vitro. Subsequently, each vector was administered to the nasal epithelia or lungs of CF mice or rats. Transduction efficiency, duration, localisation and CFTR function were assessed using histology, electrophysiological measurements, and in vivo bioluminescence imaging. Results: LV vectors containing reporter genes or CFTR have been shown to successfully transduce the lung and express transgenes long-term. Non-specific alveoli cells and macrophages are transduced in conjunction with a low proportion of therapeutically-relevant basal cells. Importantly, LV vector containing tagged or non-tagged CFTR produced functional correction of the nasal potential difference with tagging of CFTR having no effect on CFTR function. Conclusions: We have shown that our vector has the potential for long-term expression, and can correct CF mutation-induced electrophysiological defects. Using vector-surface engineering strategies, we now aim to overcome the current challenges of basal cell targeting, immune responses, and off-target transduction of non-therapeutic cell types. Combatting these critical obstacles will enable full and rapid progress in gene therapy treatment for this life-limiting disease.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼