RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        RNA binding protein QKI contributes to WT1 mRNA and suppresses apoptosis in ST cells

        Xin Liu,Jia Guo,Mengjiao Zhou,Yuwei Yang,Mengdi Liang,Chunyan Bai,Zhihui Zhao,Boxing Sun 한국유전학회 2017 Genes & Genomics Vol.39 No.9

        The RNA binding protein quaking (QKI), a key member of the STAR family, as an upstream gene could involve in much process including cell proliferation, apoptosis, differentiation and so on. However, the roles of QKI in germ cell, especially in swine testis (ST) cells, was not clear currently. And apoptosis plays important roles in the growth and development. The purpose of the present study was to clarify the relationship between QKI and apoptosis in ST cells. Firstly, our results showed that pEF1α- QKI and shQKI3 have clear effects on expression levels of QKI. Secondly, we established that QKI directly binds to WT1 3′UTR by binding with QRE-1 (2046–2052 bp, ACT AAC ) only. Furthermore, QKI overexpression significantly increased the expression levels of WT1 and Bcl-2. QKI also has the effect on delaying the degradation of WT1 mRNA. In addition, we verified that QKI had a significantly suppressed apoptosis in ST cells. Finally, pBI-WT1 could make up for shQKI3-induced decrease in WT1, Bcl-2 mRNA levels and suppress apoptosis in ST cells. The results demonstrated that QKI was an important regulatory factor that affects apoptosis by targeting WT1 gene.

      • KCI등재

        Outcome of COVID-19 Infection in Patients With Multiple Sclerosis Who Received Disease-Modifying Therapies: A Systematic Review and Meta-Analysis

        Ning Liu,WuHan Yu,Mengjiao Sun,Wenjing Zhang,Dan Zhou,Jing Sun,ManXia Wang 대한신경과학회 2023 Journal of Clinical Neurology Vol.19 No.4

        Background and Purpose A systematic review and meta-analysis was performed of the outcome of Coronavirus disease 2019 (COVID-19) infection in patients with multiple sclerosis (MS) who received disease-modifying therapies (DMTs). Methods Relevant studies published before November 2022 in the PubMed, Cochrane Library, Chinese National Knowledge Infrastructure, and Web of Science databases were retrieved using the following search expression: (“multiple sclerosis” OR “MS”) AND (“DMT” OR “disease modifying therapies”) AND (“COVID-19”). Two authors independently screened the articles and extracted the data. Qualitative analyses and a meta-analysis constituted 22 of the 794 retrieved articles. Differences in the hospitalization and mortality rates were used as the main measures of efficacy, and the meta-analysis was performed using RevMan software. Results 22 clinical trials were selected. The hospitalization rate was lower in the 3,216 patients who received DMTs than in the 774 patients who did not receive any treatment, with a moderate effect size of 0.43 (p<0.00001). The mortality rate was also lower among patients with MS treated using DMTs than in controls (odds ratio [OR]=0.19, 95% confidence interval [CI]=0.13–0.27, p<0.00001). The hospitalization rates for COVID-19 infection in patients with MS treated with anti-CD20 therapy also increased markedly (OR=3.32, 95% CI=2.63–4.20, p<0.00001). However, there was no significant difference between patients with MS who did and did not receive DMTs. Conclusions In summary, the application of DMTs was found to be valuable for patients with MS infected with COVID-19. However, more clinical studies are needed to determine the use of anti-CD20 drugs in patients with MS during the COVID-19 pandemic.

      • KCI등재

        Continuous Passaging of a Recombinant C-Strain Virus in PK-15 Cells Selects Culture-Adapted Variants that Showed Enhanced Replication but Failed to Induce Fever in Rabbits

        ( Chao Tong ),( Ning Chen ),( Xun Liao ),( Xuemei Yuan ),( Mengjiao Sun ),( Xiaoliang Li ),( Weihuan Fang ) 한국미생물생명공학회(구 한국산업미생물학회) 2017 Journal of microbiology and biotechnology Vol.27 No.9

        Classical swine fever virus (CSFV) is the etiologic agent of classical swine fever, a highly contagious disease that causes significant economic losses to the swine industry. The lapinized C-strain, a widely used vaccine strain against CSFV, has low growth efficiency in cell culture, which limits the productivity in the vaccine industry. In this study, a recombinant virus derived from C-strain was constructed and subjected to continuous passaging in PK-15 cells with the goal of acquiring a high progeny virus yield. A cell-adapted virus variant, RecCpp80, had nearly 1,000-fold higher titer than its parent C-strain but lost the ability to induce fever in rabbits. Sequence analysis of cell-adapted RecC variants indicated that at least six nucleotide changes were fixed in RecCpp80. Further adaption of RecCpp80 variant in swine testicle cells led to a higher virus yield without additional mutations. Introduction of each of these residues into the wild-type RecC backbone showed that one mutation, M979R (T3310G), located in the C-terminal region of E2 might be closely related to the cell-adapted phenotype. Rabbit inoculation revealed that RecCpp80+10 failed to induce fever in rabbits, whereas RecCpp40<sub>+10</sub> caused a fever response similar to the commercial C-strain vaccine. In conclusion, the C-strain can be adapted to cell culture by introducing specific mutations in its E2 protein. The mutations in RecCpp80 that led to the loss of fever response in rabbits require further investigation. Continuous passaging of the C-strain-based recombinant viruses in PK-15 cells could enhance its in vitro adaption. The non-synonymous mutations at 3310 and 3531 might play major roles in the enhanced capacity of general virus reproduction. Such findings may help design a modified C-strain for improved productivity of commercial vaccines at reduced production cost.

      • KCI등재

        A prototype of the SiPM readout scintillator neutron detector for the engineering material diffractometer of CSNS

        Qian Yu,Bin Tang,Chang Huang,Yadong Wei,Shaojia Chen,Lin Qiu,Xiuku Wang,Hong Xu,Zhijia Sun,Guangyou Wei,Mengjiao Tang 한국원자력학회 2022 Nuclear Engineering and Technology Vol.54 No.3

        A high detection efficiency thermal neutron detector based on the 6LiF/ZnS(Ag) scintillation screens,wavelength-shifting fibers (WLSF) and Silicon photomultiplier (SiPM) readout is under development atChina Spallation Neutron Source (CSNS) for the Engineering Material Diffractometer (EMD).A prototypewith a sensitive volume of 180mm 192mm has been built. Signals from SiPMs are processed by the selfdesignApplication Specific Integrated Circuit (ASIC). The performances of this detector prototype are as follows: neutron detection efficiency could reach50.5% at 1 Å, position resolution of 3, the dark count rate <0.1Hz, the maximum count rate >200KHz. Such detector prototype could be an elementary unit for applications in the EMD detector arrays.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼