RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Analysis of Dynamic Response Characteristics for 5 MW Jacket-type Fixed Offshore Wind Turbine

        Jaewook Kim,Sanghwan Heo,WeonCheol Koo 한국해양공학회 2021 韓國海洋工學會誌 Vol.35 No.5

        This study aims to evaluate the dynamic responses of the jacket-type offshore wind turbine using FAST software (Fatigue, Aerodynamics, Structures, and Turbulence). A systematic series of simulation cases of a 5 MW jacket-type offshore wind turbine, including wind-only, wave-only, wind & wave load cases are conducted. The dynamic responses of the wind turbine structure are obtained, including the structure displacement, rotor speed, thrust force, nacelle acceleration, bending moment at the tower bottom, and shear force on the jacket leg. The calculated time-domain results are transformed to frequency domain results using FFT and the environmental load with more impact on each dynamic response is identified. It is confirmed that the dynamic displacements of the wind turbine are dominant in the wave frequency under the incident wave alone condition, and the rotor thrust, nacelle acceleration, and bending moment at the bottom of the tower exhibit high responses in the natural frequency band of the wind turbine. In the wind only condition, all responses except the vertical displacement of the wind turbine are dominant at three times the rotor rotation frequency (considering the number of blades) generated by the wind. In a combined external force with wind and waves, it was observed that the horizontal displacement is dominant by the wind load. Additionally, the bending moment on the tower base is highly affected by the wind. The shear force of the jacket leg is basically influenced by the wave loads, but it can be affected by both the wind and wave loads especially under the turbulent wind and irregular wave conditions.

      • KCI등재

        Stability behavior of the transmission line system under incremental dynamic wind load

        Hadi Sarmasti,Karim Abedi,Mohammad Reza Chenaghlou 한국풍공학회 2020 Wind and Structures, An International Journal (WAS Vol.31 No.6

        Wind load is the principal cause for a large number of the collapse of transmission lines around the world. The transmission line is traditionally designed for wind load according to a linear equivalent method, in which dynamic effects of wind are not appropriately included. Therefore, in the present study, incremental dynamic analysis is utilized to investigate the stability behavior of a 400 kV transmission line under wind load. In that case, the effects of vibration of cables and aerodynamic damping of cables were considered on the stability behavior of the transmission line. Superposition of the harmonic waves method was used to calculate the wind load. The corresponding wind speed to the beginning of the transmission line collapse was determined by incremental dynamic analysis. Also, the effect of the yawed wind was studied to determine the critical attack angle by the incremental dynamic method. The results show the collapse mechanisms of the transmission line and the maximum supportable wind speed, which is predicted 6m/s less than the design wind speed of the studied transmission line. Based on the numerical modeling results, a retrofitting method has been proposed to prevent failure of the tower members under design wind speed.

      • KCI등재

        Performance-based wind design of tall buildings: concepts, frameworks, and opportunities

        Matiyas A. Bezabeh,Girma T. Bitsuamlak,Solomon Tesfamariam 한국풍공학회 2020 Wind and Structures, An International Journal (WAS Vol.31 No.2

        One of the next frontiers in structural wind engineering is the design of tall buildings using performance-based approaches. Currently, tall buildings are being designed using provisions in the building codes and standards to meet an acceptable level of public safety and serviceability. However, recent studies in wind and earthquake engineering have highlighted the conceptual and practical limitations of the code-oriented design methods. Performance-based wind design (PBWD) is the logical extension of the current wind design approaches to overcome these limitations. Towards the development of PBWD, in this paper, we systematically review the advances made in this field, highlight the research gaps, and provide a basis for future research. Initially, the anatomy of the Wind Loading Chain is presented, in which emphasis was given to the early works of Alan G. Davenport. Next, the current state of practice to design tall buildings for wind load is presented, and its limitations are highlighted. Following this, we critically review the state of development of PBWD. Our review on PBWD covers the existing design frameworks and studies conducted on the nonlinear response of structures under wind loads. Thereafter, to provide a basis for future research, the nonlinear response of simple yielding systems under long-duration turbulent wind loads is studied in two phases. The first phase investigates the issue of damage accumulation in conventional structural systems characterized by elastic-plastic, bilinear, pinching, degrading, and deteriorating hysteretic models. The second phase introduces methods to develop new performance objectives for PBWD based on joint peak and residual deformation demands. In this context, the utility of multi-variate demand modeling using copulas and kernel density estimation techniques is presented. This paper also presents joined fragility curves based on the results of incremental dynamic analysis. Subsequently, the efficiency of tuned mass dampers and self-centering systems in controlling the accumulation of damage in wind-excited structural systems are investigated. The role and the need for explicit modeling of uncertainties in PBWD are also discussed with a case study example. Lastly, two unified PBWD frameworks are proposed by adapting and revisiting the Wind Loading Chain. This paper concludes with a summary and a proposal for future research.

      • SCIESCOPUS

        Aerodynamic effect of wind barriers and running safety of trains on high-speed railway bridges under cross winds

        Guo, Weiwei,Xia, He,Karoumi, Raid,Zhang, Tian,Li, Xiaozhen Techno-Press 2015 Wind and Structures, An International Journal (WAS Vol.20 No.2

        For high-speed railways (HSR) in wind prone regions, wind barriers are often installed on bridges to ensure the running safety of trains. This paper analyzes the effect of wind barriers on the running safety of a high-speed train to cross winds when it passes on a bridge. Two simply-supported (S-S) PC bridges in China, one with 32 m box beams and the other with 16 m trough beams, are selected to perform the dynamic analyses. The bridges are modeled by 3-D finite elements and each vehicle in a train by a multi-rigid-body system connected with suspension springs and dashpots. The wind excitations on the train vehicles and the bridges are numerically simulated, using the static tri-component coefficients obtained from a wind tunnel test, taking into account the effects of wind barriers, train speed and the spatial correlation with wind forces on the deck. The whole histories of a train passing over the two bridges under strong cross winds are simulated and compared, considering variations of wind velocities, train speeds and without or with wind barriers. The threshold curves of wind velocity for train running safety on the two bridges are compared, from which the windbreak effect of the wind barrier are evaluated, based on which a beam structure with better performance is recommended.

      • SCIESCOPUS

        Investigation of wind actions and effects on the Leaning Tower of Pisa

        Solari, Giovanni,Reinhold, Timothy A.,Livesey, Flora Techno-Press 1998 Wind and Structures, An International Journal (WAS Vol.1 No.1

        This paper describes wind investigations for the Leaning Tower of Pisa which were conducted as part of an overall evaluation of its behaviour. Normally a short, stiff and heavy building would not be a candidate for detailed wind analyses. However, because of extremely high soil pressures developed from its inclination, there has been increasing concern that environmental loading such as wind actions could combine with existing conditions to cause the collapse of the tower. The studies involved wind assessment at the site as a function of wind direction, analysis of historical wind data to determine extreme wind probabilities of occurrence, estimation of structural properties, analytical and boundary layer wind tunnel investigations of wind loads and evaluation of the response with special concern for loads in the direction of inclination of the tower and significant wake effects from the neighboring cathedral for critical wind directions. The conclusions discuss the role of wind on structural safety, the precision of results attained and possible future studies involving field measurements aimed at validating or improving the analytical and boundary layer wind tunnel based assessments.

      • KCI등재

        Aerodynamic effect of wind barriers and running safety of trains on high-speed railway bridges under cross winds

        Weiwei Guo,He Xia,Raid Karoumi,Tian Zhang,Xiaozhen Li 한국풍공학회 2015 Wind and Structures, An International Journal (WAS Vol.20 No.2

        For high-speed railways (HSR) in wind prone regions, wind barriers are often installed onbridges to ensure the running safety of trains. This paper analyzes the effect of wind barriers on the runningsafety of a high-speed train to cross winds when it passes on a bridge. Two simply-supported (S-S) PCbridges in China, one with 32 m box beams and the other with 16 m trough beams, are selected to performthe dynamic analyses. The bridges are modeled by 3-D finite elements and each vehicle in a train by amulti-rigid-body system connected with suspension springs and dashpots. The wind excitations on the trainvehicles and the bridges are numerically simulated, using the static tri-component coefficients obtained froma wind tunnel test, taking into account the effects of wind barriers, train speed and the spatial correlationwith wind forces on the deck. The whole histories of a train passing over the two bridges under strong crosswinds are simulated and compared, considering variations of wind velocities, train speeds and without orwith wind barriers. The threshold curves of wind velocity for train running safety on the two bridges arecompared, from which the windbreak effect of the wind barrier are evaluated, based on which a beamstructure with better performance is recommended.

      • SCIESCOPUS

        Nonlinear dynamic analysis for large-span single-layer reticulated shells subjected to wind loading

        Li, Yuan-Qi,Tamura, Yukio Techno-Press 2005 Wind and Structures, An International Journal (WAS Vol.8 No.1

        Wind loading is very important in structural design of large-span single-layer reticulated shell structures. In this paper, a geometrically nonlinear wind-induced vibration analysis strategy for large-span single-layer reticulated shell structures based on the nonlinear finite element method is introduced. According to this strategy, a computation program has been developed. With the information of the wind pressure distribution measured simultaneously in the wind tunnel, nonlinear dynamic analysis, including dynamic instability analysis, for the wind-induced vibration of a single-layer reticulated shell is conducted as an example to investigate the efficiency of the strategy. Finally, suggestions are given for dynamic wind-resistant analysis of single-layer reticulated shells.

      • KCI등재후보

        Wind-induced vibration fragility of outer-attached tower crane to super-tall buildings: A case study

        Yi Lu,Luo Zhang,Zheng He,Fan Feng,Feng Pan 한국풍공학회 2021 Wind and Structures, An International Journal (WAS Vol.32 No.5

        To gain insight into the wind-induced safety concerns associated with attached tower cranes during the construction of super-tall buildings, a 606 m level frame-core tube super-tall building is selected to investigate the wind-induced vibration response and fragility of an outer-attached tower crane at all stages of construction. The wind velocity time history samples are artificially generated and used to perform dynamic response analyses of the crane to observe the effects of wind velocity and wind direction under its working and non-working resting state. The adverse effects of the relative displacement response at different connection supports are also identified. The wind-resistant fragility curves of the crane are obtained by introducing the concept of incremental dynamic analysis. The results from the investigation indicate that a large relative displacement between the supports can substantially amplify the response of the crane at high levels. Such an effect becomes more serious when the lifting arm is perpendicular to the plane of the connection supports. The flexibility of super-tall buildings should be considered in the design of outer-attached tower cranes, especially for anchorage systems. Fragility analysis can be used to specify the maximum appropriate height of the tower crane for each performance level.

      • KCI등재

        대기경계층 공탄성 실험에서 역추정된 동적 풍방향 하중 특성

        황재승 대한건축학회지회연합회 2018 대한건축학회연합논문집 Vol.20 No.1

        The dynamic along-wind response based on spectral modal analysis has been adopted as a wind load standard in many countries over the world due to the advantage of evaluating the dynamic response by the simple theoretical formula since it has been established in the 1960s. In theoretical evaluation process, the modal wind load spectrum was derived from the spectral density of longitudinal velocity fluctuation, and the spectral modal analysis is performed for the wind-resistant performance. Since the modal wind load spectrum is derived by simplifying wind characteristics such as drag coefficient, turbulence intensity, co-coherence, etc. to facilitate the theoretical development, it is necessary to examine the validity of the simplification. In this study, the aero-elastic model test was performed in the atmospheric boundary layer wind tunnel, and the modal response was separated from the acceleration responses measured from the model test by applying the state space mode decomposition technique. And then modal load was estimated in order to compare with the theoretical modal wind load. Especially, the characteristics of aerodynamic admittance used for the conversion from spectral density of wind velocity to modal wind load spectrum are mainly analyzed and compared with theoretical aerodynamic admittance. From the results, it is shown that the spectrum of estimated dynamic wind load is slightly different with the theoretical wind load spectrum according to the top wind velocity, but the overall spectral characteristics is similar in the frequency signature. Applying the process in this study to the measured response of a structure under natural wind, it can be used for estimating the wind load in the natural environment condition and establishing a wind load model based on in-situ data. 스펙트럼 모드해석에 기반한 풍방향 동적해석법은 1960년대에 정립된 이후, 이론적인 식에 의해서 응답을 평가할 수 있는 장점 때문에 세계 많은 나라에서 풍하중 기준으로 사용되고 있다. 이론식은 변동풍속 스펙트럼으로부터 모달풍하중 스펙트럼을 유도하고 스펙트럼해석에 의한 변동응답을 이용하여 구조물의 내풍성능을 평가할 수 있었다. 모달 풍하중 스펙트럼은 이론적 전개를 용이하게 하기 위하여 풍력계수, 난류강도, 코-코히어런스 등과 같은 바람의 성상을 단순화하여 유도된 것으로 그에 대한 타당성을 검토할 필요가 있다. 본 연구에서는 대기 경계층 풍동에서 공탄성 실험을 수행하고 하중 추정법을 이용하여 풍방향 동적하중을 구하였으며, 이를 이론적인 모달 풍하중 스펙트럼과 비교하였다. 공탄성 실험으로부터 계측된 가속도 응답에 상태공간 모드분해법을 적용하여 모달응답을 구하고 그로부터 풍방향 모달하중을 역추정하고 이론적 모달풍하중과 비교하여 그 특성을 분석하였다. 특히 풍속스펙트럼으로부터 모달 풍하중스펙트럼으로의 변환과정에서 요구되는 공력어드미턴스의 특성을 이론적 어드미턴스와 비교분석하였다. 분석결과 추정된 풍방향 동적하중 스펙트럼은 최상층 풍속에 따라 이론적 풍하중 스펙트럼의 크기가 다소 다르게 반영되어 나타났으나 진동수 특성은 매우 유사한 것을 확인할 수 있었다. 본 연구기법과 과정을 자연풍을 받는 구조물의 실계측 응답에 적용하면 자연환경상태의 풍하중을 분석하고 그에 기반하여 풍하중 모델을 정립하는데 활용 가능할 것으로 사료된다.

      • SCOPUSKCI등재

        Structural Behaviors of Large Industrial Door Using Computational Fluid Dynamic and Structural Interaction Analysis

        차재호(Jae Ho Cha),윤성호(Sung Ho Yoon) Korean Society for Precision Engineering 2021 한국정밀공학회지 Vol.38 No.6

        In this study, the deformation of a large industrial door subjected to wind load was investigated through computational fluid dynamic and structural analyses. The model for the structural analysis was simplified by considering the PVC curtain and wind bar in the shape of the actual door. The pressure distribution acting on the front of the door was obtained from computational fluid dynamic analysis and the deformation of the door was obtained from structural analysis. According to the results, the pressure distribution was not uniform on the front of the door and varied depending on the location. The distribution of the deflection in the wind bar was obtained and it was found that the position of the maximum deformation occurred slightly above the center of the door. Finally, the deformation of the door could be predicted by analyzing the deflections of the wind bar subjected to different wind speeds through regression analysis.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼