RISS 학술연구정보서비스

다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      • 좁혀본 항목

      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
          • 원문제공처
          • 등재정보
          • 학술지명
          • 주제분류
            • 발행연도
            • 작성언어
            • 저자

          오늘 본 자료

          • 오늘 본 자료가 없습니다.
          • 무료
          • 기관 내 무료
          • 유료
          • SCIEKCI등재

            Precision Nanometrology and its Applications to Precision Nanosystems

            Gao,Wei Korean Society for Precision Engineering 2005 International Journal of Precision Engineering and Vol.6 No.4

            In this paper, a new field of metrology called 'precision nanometrology' is presented. The 'precision nanometrology' is the result of evolutions of the traditional 'precision metrology' and the new 'nanometrology'. 'Precision nanometrology' is defined here as the science of dimensional measurement and motion measurement with 100 nm to 0.1 nm resolution/uncertainty within a range of micrometer to meter. The definition is based on the fact that nanometrology in nanoengineering and the precision industries, such as semiconductor industry, precision machine tool industry, precision instrument industry, is not only concerned with the measurement resolution and/or uncertainty but also the range of measurement. It should also be pointed out that most of the measurement objects in nanoengineering have dimensions larger than 1 micrometer. After explaining the definition of precision nanometrology, the paper provides several examples showing the critical roles of precision nanometrology in precision nanosystems, including nanometrology system, nanofabrication system, and nanomechatronics system.

          • SCIEKCI등재

            Influence of Rolling Friction in Linear Ball Guideways on Positioning Accuracy

            Tanaka,,Toshiharu,Ikeda,,Kyohei,Otsuka,,Jiro,Masuda,,Ikuro,Oiwa,,Takaaki Korean Society for Precision Engineering 2007 International Journal of Precision Engineering and Vol.8 No.2

            Linear ball guideways have been used recently in precision or ultra-precision positioning devices. However, when the inner balls begin to roll or the moving direction reverses, these guideways are subject to rolling friction or nonlinear spring behavior. An ultra-precision device with a linear motor, referred to as a 'tunnel actuator' (TA), has been constructed to measure these phenomena. The application of a TA is beneficial for two reasons: it mostly cancels the attractive magnetic force between the stator and mover (armature), and its magnetic flux leakage is very low. The influence of the nonlinear spring behavior in ball guideways was investigated in this study using the pure driving force from a TA. The equilibrium between the driving force from the TA and the nonlinear spring force provided great accuracy for a positioning stage using a linear ball guideway.

          • SCIEKCI등재

            Development of an Ultra Precision Hydrostatic Guideway Driven by a Coreless Linear Motor

            Park,Chun,Hong,Oh,Yoon,Jin,Hwang,Joo,Ho,Lee,Deug,Woo Korean Society for Precision Engineering 2005 International Journal of Precision Engineering and Vol.6 No.2

            In order to develop the hydrostatic guideways driven by a core less linear motor for ultra precision machine tools, a prototype of guideway is designed and tested. A coreless linear DC motor with a continuous force of 156 N and a laser scale with a resolution of 0.01 ㎛ are used in the system. Experimental analysis on the static stiffness, motion errors, positioning error and its repeatability, micro step response and velocity variation of the guideway are performed. The guideway shows infinite stiffness within 50 N applied load in the feed direction, and by the motion error compensation method using the Active Controlled Capillary, 0.08 ㎛ linear motion error and 0.1 arcsec angular motion error are acquired. The guideway also reveals 0.21 ㎛ positioning error and 0.09 ㎛ repeatability, and it shows stable responses following a 0.01 ㎛ resolution step command. The velocity variation of feeding system is less than 0.6 %. From these results, it is estimated that the hydrostatic guideway driven by a coreless linear motor is very useful for the ultra precision machine tools.

          • SCIEKCI등재

            Structural Characteristic Analysis of a High-precision Centerless Grinding Machine with a Concrete-filled Bed

            Kim,,Seok-Il,Cho,,Jae-Wan Korean Society for Precision Engineering 2006 International Journal of Precision Engineering and Vol.7 No.4

            High-precision centerless grinding machines are emerging as a means of finishing the outer diameter grinding process required for ferrules, which are widely used as fiber optic connectors. In this study, a structural characteristic analysis and evaluation were carried out using a virtual prototype of a centerless grinding machine to realize systematic design technology and performance improvements required to manufacture ferrules. The prototype consisted of a concrete-filled bed, hydrostatic grinding wheel (GW) and regulating wheel (RW) spindle systems, a hydrostatic RW feed mechanism, a RW swivel mechanism, and on-machine GW and RW dressers. The loop stiffness values of the centerless grinding machine were estimated based on the relative displacements between the GW and RW caused by grinding forces. The simulated results illustrated that a concrete-filled bed considerably improved the structural stiffness and accuracy of a high-precision centerless grinding machine.

          • KCI등재

            정밀 위치 결정 및 고하중 부담 능력을 지닌 6-자유도 스테이지의 설계

            신현표(Hyun-Pyo Shin) Korean Society for Precision Engineering 2013 한국정밀공학회지 Vol.30 No.1

            This paper presents the structural design and finite element analysis of precision stage based on a double triangular parallel mechanism for precision positioning and large force generation. Recently, with the acceleration of miniaturization in mobile appliances, the demand for precision aligning and bonding has been increasing. Such processes require both high precision and large force generation, which are difficult to obtain simultaneously. This study aimed at constructing a precision stage that has high precision, long stroke, and large force generation. Actuators were tactically placed and flexure hinges were carefully designed by optimization process to constitute a parallel mechanism with a double triangular configuration. The three actuators in the inner triangle function as an in-plane positioner, whereas the three actuators in the outer triangle as an out-of-plane positioner. Finite element analysis is performed to validate load carrying performances of the developed precision stage.

          • KCI등재

            듀얼스테이지를 이용한 고정밀도의 하이브리드 밀링머신

            정병묵(Byeong Mook Chung), 여인주(In Joo Yeo), 고태조(Tae Jo Ko), 이천(Cheon Lee) Korean Society for Precision Engineering 2008 한국정밀공학회지 Vol.25 No.7

            High precision machining technology has become one of the important parts in the development of a precision machine. Such a machine requires high speed on a large workspace as well as high precision positioning. For machining systems having a long stroke with ultra precision, a dual-stage system including a global stage (coarse stage) and a micro stage (fine stage) is designed in this paper. Though linear motors have a long stroke and high precision feed drivers, they have some limitations for submicron positioning. Piezo-actuators with high precision also have severe disadvantage for the travel range, and the stroke is limited to a few microns. In the milling experiments, the positional accuracy has been readily achieved within 0.2 micron over the typical 20 ㎜ stroke, and the path error over 2 micron was reduced within 0.2 micron. Therefore, this technique can be applied to develop high precision positioning and machining in the micro manufacturing and machining system.

          • SCIEKCI등재

            Geometrical Compensation of Injection-Molded Thin-Walled Parts in Reverse Engineering

            Kim,Yeun,Sul,Lee,Hi,Koan,Huang,Jing,Chung,Kong,Young,Sik,Yang,Gyun,Eui Korean Society for Precision Engineering 2005 International Journal of Precision Engineering and Vol.6 No.2

            A geometric compensation of thin-walled molded parts in reverse engineering is presented. Researches in reverse engineering have focused on the fitting of points to curves and surfaces. However, the reconstructed model is not the geometric model because the molded parts have some dimensional errors in measurements and deformation during molding. Geometric information can give an improved accuracy in reverse engineering. Thus, measurement data must be compensated with geometric information to reconstruct the mathematical model. The functional and geometric concepts of the part can be derived from geometric information. LSM (Least square method) is adopted to determine the geometric information. Also, an example of geometric compensation is given to improve the accuracy of geometric model and to inspect the reconstructed model.

          • SCOPUSKCI등재

            Compliance Analysis and Design Optimization of a 2-DOF Precision Positioning Stage based on Serial Mechanism for Enhanced Resonance Frequency Isotropy

            신현표(Hyun-Pyo Shin) Korean Society for Precision Engineering 2020 한국정밀공학회지 Vol.37 No.6

            Precision positioning stages are devices for precisely positioning objects according to required degrees of freedom and performance. Precision positioning stages are classified into serial and parallel mechanisms. Except for specific applications, the parallel mechanism is preferred. In serial mechanism, dynamic characteristics such as resonant frequency are clearly different from axis to axis and the first resonance frequency is distinctly low compared to the second. These make the control performance different for each axis and incurs limitation in control. In this study, the first and second resonant frequencies in a serial 2-DOF precision positioning stage were increased while maintaining their approximal value. Compliance analysis for the stage was performed by applying the matrix based method. A new concept of resonant frequency isotropy (RFI) was introduced and design optimization was performed in which first and second resonant frequencies almost coincided. This optimization allowed for the design of a serial 2-DOF precision positioning stage with enhanced first resonance frequency by 50.8% and RFI by 80.2% compared to the initial design. This paper is expected to increase the use of precision positioning stages based on serial mechanism and apply the concept of RFI to the positioning stages with more than 2-DOF.

          • SCOPUSKCI등재

            A Study on the Development of Smart Factory Equipment Engineering System and Effects

            Hyun Sik Sim(심현식) Korean Society for Precision Engineering 2019 한국정밀공학회지 Vol.36 No.2

            The Smart Factory Equipment Engineering System collects and monitors necessary information in real-time. While putting the product into the equipment, operation conditions are lowered through a Recipe Management System. The working conditions are set by Run-to-Run a system for real-time detection and control through Fault Detection Classification function. In this study, the smart factory equipment system associated with the entire system is proposed by defining and integrating the necessary equipment management functions from a smart factory's point of view. To do this, detailed analysis and process improvement on products, processes, and production line equipment were conducted and implemented in the smart factory equipment engineering system. The models proposed in this paper have been implemented to the production site of BGA-PCB. It has been confirmed that the models have resulted in significant change, and have qualitative and quantitative impacts on the working methods of equipment. Typically, data collection time, data entry time, and manual writing sheets were greatly reduced.

          • SCIEKCI등재

            A High-speed Atomic Force Microscope for Precision Measurement of Microstructured Surfaces

            Cui,,Yuguo,Arai,,Yoshikazu,Asai,,Takemi,Ju,,BinFeng,Gao,,Wei Korean Society for Precision Engineering 2008 International Journal of Precision Engineering and Vol.9 No.3

            This paper describes a contact atomic force microscope (AFM) that can be used for high-speed precision measurements of microstructured surfaces. The AFM is composed of an air-bearing X stage, an air-bearing spindle with the axis of rotation in the Z direction, and an AFM probe unit. The traversing distance and maximum speed of the X stage are 300 mm and 400 mm/s, respectively. The spindle has the ability to hold a sample in a vacuum chuck with a maximum diameter of 130 mm and has a maximum rotation speed of 300 rpm. The bandwidth of the AFM probe unit in an open loop control circuit is more than 40 kHz. To achieve precision measurements of microstructured surfaces with slopes, a scanning strategy combining constant height measurements with a slope compensation technique is proposed. In this scanning strategy, the Z direction PZT actuator of the AFM probe unit is employed to compensate for the slope of the sample surface while the microstructures are scanned by the AFM probe at a constant height. The precision of such a scanning strategy is demonstrated by obtaining profile measurements of a microstructure surface at a series of scanning speeds ranging from 0.1 to 20.0 mm/s.

          맨 위로 스크롤 이동