RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Evaluation of Unconfined Compression Test for Bentonite Mixtures

        Seok Yoon,Gi-Jun Lee,Deuk Hwan Lee,Min-Hyeong Lee,Sojeong Lee 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.2

        The bentonite buffer material is a crucial component for disposing of high-level radioactive waste (HLW). Several additives have been proposed to enhance the performance of bentonite buffer materials. In this study, unconfined compression tests were conducted on bentonite mixtures as well as pure bentonite buffer material. Joomunjin and silica sands were added at a 30% ratio, and graphite was added at 3% along with bentonite. The unconfined compression strength (UCS) and elastic modulus of pure bentonite were found to be 20% to 50% higher than those of bentonite mixtures under similar dry density and water content conditions. This decrease in strength can be attributed to the reduced cross-sectional area available for bearing the applied load in the bentonitemixture. Furthermore, the 3% graphite-bentonite mixture exhibited a 10% to 30% higher UCS and elastic modulus compared to the 30% sand-bentonite mixtures. However, since the strength properties of additive-bentonite mixtures are lower than those of pure bentonite, it is essential to evaluate thermohydraulic-mechanical functional criteria when considering the use of bentonite mixtures as buffer materials.

      • Mineralogical and Physicochemical Characteristics of Bentonite in the Naah Bentonite Mine, Gyeongju: Natural Analogue Study of the Bentonite Barrier

        Yujin Byun,Chanyoung Seo,Ho Young Jo,Young Jae Lee,Ji-Hun Ryu,Hye-Yoon Chong,Seong-Wan Park 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.2

        Deep geological disposal is generally accepted to be the most practical approach to handling radioactive wastes. Bentonite has been considered as a buffer material in deep geological disposal repositories (DGR) for high-level radioactive wastes. Evaluating the effect of short-term bentonite alteration on EBS performance has limitations in safety assessment over thousands of years. Information on bentonite characteristics under various conditions obtained from natural systems can be used to evaluate long-term safety of bentonite buffer. The purpose of this study was to investigate mineralogical and physicochemical characteristics of bentonite in the Naah mine located in Yangnam-myeon, Gyeongju-si for a natural analogue of the bentonite barrier in DGR. A total of 15 samples were collected at regular intervals from the bentonite layer and andesitic lapilli tuff (i.e., parent rock) at the boundary with the bentonite layer. The bentonite layer is located at a depth of about 1 m below the ground surface. Each sample was separated into particles < < 75 μm and particles < 2 μm through grinding and sedimentation processes. The separated subsamples were characterized mineralogically and physiochemically using various analytic techniques. Bentonite samples have a similar SiO2/Al2O3 ratio to the parent rock and a lower (Na+K)/Si ratio than the parent rock, indicating depletion of alkali components during bentonitization. The parent rock and bentonite samples have similar mineral composition (i.e., quartz, feldspars, opal-cristobalite-tridymite and montmorillonite). Results of XRD analysis on the randomly distributed particles < 2 μm indicate that bentonite is mostly composed of Ca-montmorillonite, which is a typical dioctahedral smectite. Results of FTIR and VNIR analysis indicate that montmorillonite contained in bentonite is Al-dioctahedral montmorillonite, and Al is substituted with Mg in some octahedron units. The mineralogical and physicochemical characteristics are similar regardless of sampling location. These results suggest that bentonite potentially exposed to weathering, located near the ground surface, has hardly altered.

      • Physical and Chemical Properties of Steam-Treated Bentonite

        Hong Jae Kim,Ho Young Jo 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.2

        Bentonite containing >50wt% montmorillonite is being considered as a buffer material in a deep geological repository to dispose of high-level radioactive wastes (HLRW). Bentonite is considered a buffer material because of its exceptional properties such as high swelling capacity, low hydraulic conductivity, and high radionuclide sorption capacity. The bentonite buffer can be exposed to heat from the radioactive decay of HLRW and to groundwater. Water in bentonite buffer can be converted to steam under elevated temperature and pressure conditions. Previous studies reported contrasting results showing that steam treatment could decrease the swelling capacity due to changes in the surface properties from hydrophilic to hydrophobic or could not change. The contrasting results were probably because different studies used different experimental conditions and methods. Therefore, the effect of steam treatment on the bentonite properties is still unclear. The purpose of this study is to determine how the bentonite properties change after steam treatment, in particular swelling and hydrophilic properties. Two types of bentonite were used for steam treatment and analysis; Gyeongju Ca-bentonite (KJ- II) and Wyoming Na-bentonite (GCL-B). Steam treatment was performed at 150°C in an oven for various periods (7, 30, 60, and 90 days). Free swell test, X-ray fluorescence (XRF) analysis, surface-area measurement (BET), thermal gravimetric analysis (TGA), cation exchange capacity (CEC), and water uptake test were performed on steam-treated bentonite for various periods and raw bentonite. After steam treatment, some properties of steam-treated bentonite changed when compared to raw bentonite. Free swell index, which means the swelling capacity, decreased significantly as the results of previous studies. CEC and BET surface area values depended on the bentonite type. For Wyoming Na-bentonite, in which the dominant interlayer cation is a monovalent cation, CEC and BET surface area values were increased. On the other hand, Gyeongju Ca-bentonite, in which the dominant interlayer cation is a divalent cation, has no change in the above two properties. Results of XRF analysis, TGA, and water uptake test showed that these properties of both bentonites did not change after steam treatment. The results of this study confirmed that steam treatment affected the swelling and physicochemical properties of bentonite, in particular Na-bentonite. Further studies will focus on the surface properties of bentonite to investigate whether the surface properties have changed from hydrophilicity to hydrophobicity, or whether the montmorillonite structure has changed.

      • KCI등재

        Ca-형 및 Na-형 벤토나이트의 제반 물성 및 유기양이온 흡착비교

        고상모 ( Sang Mo Koh ),김자영 ( Ja Young Kim ) 한국광물학회 2002 광물과 암석 (J.Miner.Soc.Korea) Vol.15 No.4

        Ca-type and Na-type bentonites show the great difference of some physicochemical properties. Na exchanged bentonite is mainly used for the foundry and construction materials in domestic utilization. This study tries to identify in detail the differences of some physicochemical properties and thermal properties between Ca-type and Na-type bentonites. Also the adsorption behavior and interlayer expansion for the HDTMA (Hexadecyltrimethylammonium) exchanged and CP (Cetylprydinium) exchanged Ca-type and Na-type bentonites were compared. Na-type bentonite shows the strong alkaline property, high viscosity and swelling compared to Ca-type bentonite. However, two types are very similar for the cation exchange capacity and MB (Methylene Blue) adsorption. The decomposition of adsorbed and interlayer water of Na-type bentonite is caused in the lower temperature than Ca-type bentonite. And Ca-type bentonite shows the decomposition of structural water in the lower temperature than Na-type bentonite. The interlayer expansion of montmorillonite resulted to the intercalation of HDTMA and CP into bentonite is so strongly caused from 12∼15 A° (basal spacing). HDTMA-bentonite is almost expanded to 37∼38 A°when 200% CEC equivalent amount of HDTMA is added, and CP-bentonite is fullly expanded to 40 A° in the 140% CEC equivalent amount of CP. It means that CP causes the stronger interlayer expansion of montmorillonite and easier adsorption than HDTMA. Adsorption behaviors of CP into bentonite is so stable and continuously sorbed in the proportion to the treatment of amount until 200% of the CEC equivalents. CP-bentonite shows the same adsorption behavior regardless of Ca-type or Na-type montmorillonite.

      • KCI등재

        Thermal Conductivity of Compacted Bentonite and Bentonite-Sand Mixture

        Won-Jin Cho,Jae-Owan Lee,Sangki Kwon 한국방사성폐기물학회 2008 방사성폐기물학회지 Vol.6 No.2

        고준위폐기물 처분장의 완충재 및 뒷채움재 후보물질로 고려되고 있는 경주벤토나이트를 대상으로 압축 벤토나이트 및 벤토나이트-모래 혼합물의 열전도도가 측정되었다. 압축벤토나이트는 건조밀도가 에서 범위에 대해, 압축 벤토나이트-모래 혼합물은 건조밀도가 에서 사이이고, 모래의 함량이 중량비로 10 wt%에서 30 wt%인 범위의 혼합물에 대해 측정하였다. 측정시료의 수분 함량은 중량비로 10 wt%에서 20 wt% 까지 변화시켰다. 압축 벤토나이트 및 벤토나이트-모래 혼합물의 열전도도는 수분함량이 일정할 때, 건조밀도가 증가할수록, 모래 함량이 많을수록 증가하였으며, 건조밀도가 일정한 경우에는 수분 함량과 모래 함량이 증가할수록 증가하였다. 각 건조밀도에서의 수분함량의 증가에 따른 열전도도 변화를 나타낼 수 있는 실험적 관계식들이 제시되었다. 이 관계식들은 10% 오차 범위에서 압축벤토나이트 및 벤토나이트-모래 혼합물의 열전도도 값을 예측할 수 있다. For the Kyungju bentonite which is considered as a candidate material for the buffer and backfill in the high-level waste repository, the thermal conductivities of compacted bentonite and a bentonite-sand mixture were measured. The thermal conductivities of the compacted bentonites with a dry density of 1.2 to and the bentonite-sand mixture with a dry density of 1.6 and were measured within the gravimetric water content range of 10wt% to 20wt% and the sand fraction range of 10 to 30wt%. The thermal conductivity of compacted bentonite and a bentonite-sand mixture increases with increasing dry density and sand weight fraction in the case of constant water weight fraction, and increases with increasing water weight fraction and sand weight fraction in the case of constant dry density. The empirical correlations to describe the thermal conductivity of compacted bentonite and a bentonite-sand mixture as a function of water fraction at each dry density were suggested. These correlations can predict the thermal conductivities of bentonite and a bentonite-sand mixture with a difference below 10%.

      • Corrosion Behavior of 10-year-old Copper Specimens in a 30°C Aerobic KURT Environment

        Minsoo Lee,Junhyuk Jang,Gha-Young Kim,Mihye Kong,Jin-Seop Kim 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.1

        Corrosion cells that simulates engineering barrier system have been stored in an aerobic KURT environment for 10 years, which were recovered and dismantled in 2021. The test specimens were compressed copper (Com. Cu), Cold spray copper (CSC Cu), Ti Gr.2, STS 304, and Cast nodular iron. The specimens were buffered by compact Ca-type Gyeongju bentonite (KJ-I) and compact Na-type Wyoming bentonite. And the corrosion cells were exposed to KURT groundwater at 30°C for about 10 years (3,675 days). As a result of the long-term experiment in aerobic environment, it was confirmed that Na-bentonite is more advantageous for inhibiting corrosion than Ca-bentonite. The corrosion thickness of the most specimens in Ca bentonite was slightly lower than in Na bentonite until the initial 500 days, but after 10 years, the corrosion thickness of copper and cast iron specimens in Na bentonite was clearly lower. The corrosion thickness of the copper specimen in Na bentonite was very low about 0.5 um in both Com. Cu and CSC Cu. Moreover, the corrosion thickness in Ca bentonite was very high about 4 um for Com. Cu and 6 um for CSC Cu. In the case of cast iron, the corrosion thickness in Na bentonite was about 13 um, and 15 um in Ca bentonite. The common feature of copper and cast iron specimens in Ca bentonite, which showed a high corrosion thickness, is the forming of a white mineral deposition layer on the specimen surface, which was presumed to be some kind of feldspar. On the other hand, it was found that the STS304 and Ti specimens were hardly corroded even after 10 years. In conclusion, when a white mineral deposition layer was formed on the specimen surface, the corrosion thickness always increased sharply than before, and thus it was estimated that the generation of the mineral deposition layer cause the increase of bentonite permeability, and rather the weakening of existing passive corrosion film.

      • KCI등재

        사용후핵연료 심지층 처분장의 완충재 소재인 WRK 벤토나이트의 pH 차이에 따른 우라늄 흡착 특성과 기작

        오유나,신대현,김단우,전소영,김선옥,이민희 대한자원환경지질학회 2023 자원환경지질 Vol.56 No.5

        사용후핵연료(Spent nuclear fuel; SNF) 심지층 처분장의 완충재 소재로서 WRK (waste repository Korea) 벤토나이트가 적합한지를 평가하기 위하여, 대표적인 방사성 핵종인 U (uranium)에 대한 WRK 벤토나이트의 흡/탈착 특성과 흡착 기작을 규명하는 다양한 분석, 흡/탈착 실내 실험, 동역학 흡착 모델링을 다양한 pH 조건에서 수행하였다. 다양한 특성 분석 결과, 주성분은 Ca-몬모릴로나이트이며, U 흡착 능력이 뛰어난 광물학적·구조적 특징들을 가지고 있었다. WRK 벤토나이트의 U 흡착 효율 및 탈착율을 규명하기 위한 흡/탈착 실험 결과, pH 5, 6, 10, 11 조건에서 WRK 벤토나이트와 U 오염수(1 mg/L)가 낮은 비율(2 g/L)로 혼합되었음에도 불구하고 높은 U 흡착 효율(>74%)과 낮은 U 탈착율(<14%)을 보였으며, 이는 WRK 벤토나이트가 SNF 처분장에서 U 거동을 제한하는 완충재 소재로서 적절하게 사용될 수 있음을 의미한다. pH 3과 7 조건에서는 상대적으로 낮은 U흡착 효율(<45%)이 나타났으며, 이는 U가 용액의 pH 조건에 따라 다양한 형태로 존재하며, 존재 형태에 따라 상이한 U 흡착기작을 가지기 때문으로 판단된다. 본 연구 실험 결과와 선행연구를 바탕으로 WRK 벤토나이트의 주요 화학적 U 흡착 기작을 pH 범위에 따라 용액 내 U의 존재형태에 근거하여 설명하였다. pH 3 이하에서 주로 UO22+ 형태로 존재하는 U는 벤토나이트 표면의 Si-O 또는 Al-O(OH)와의 정전기적 인력(예: 이온 결합)에 의해 흡착되기 때문에 pH가 감소할수록 음전하 표면이 약해지는 WRK 벤토나이트 특성에 의해 비교적 낮은 U 흡착 효율이 나타났다. pH 7 이상의 알칼리성 조건에서 U는 음이온 U-수산화 복합체(UO2(OH)3-, UO2(OH)42-, (UO2)3(OH)7- 등)로 존재하며 비교적 높은 흡착 효율이 나타내는데, 이들은 벤토나이트에 포함된 Si-O 또는 Al-O(OH)의 산소원자를 공유하거나 리간드 교환에 의해 새로운 U-복합체가 형성되어 흡착되거나 수산화물 형태의 공침(co-precipitation)에 의해 벤토나이트에 고정되기 때문이다. pH 7의 중성 조건에서는 pH 5와 6보다 오히려 낮은 U 흡착 효율(42%)이 나타났는데, 이러한 결과는 용액 내 존재하는 탄산염(carbonate)에 의해 U가 U-수산화 복합체보다 용해도가 높은 U-탄산염 복합체로 존재하는 경우 가능하다. 연구 결과 pH를 약산성 또는 염기성 조건으로 유지하거나 용액 내 존재하는 탄산염을 제한함으로써 WRK 벤토나이트의 U 흡착 효율을 높일 수 있는 것으로 나타났다. This study focused on evaluating the suitability of the WRK (waste repository Korea) bentonite as a buffer material in the SNF (spent nuclear fuel) repository. The U (uranium) adsorption/desorption characteristics and the adsorption mechanisms of the WRK bentonite were presented through various analyses, adsorption/desorption experiments, and kinetic adsorption modeling at various pH conditions. Mineralogical and structural analyses supported that the major mineral of the WRK bentonite is the Ca-montmorillonite having the great possibility for the U adsorption. From results of the U adsorption/desorption experiments (intial U concentration: 1 mg/L) for the WRK bentonite, despite the low ratio of the WRK bentonite/U (2 g/L), high U adsorption efficiency (>74%) and low U desorption rate (<14%) were acquired at pH 5, 6, 10, and 11 in solution, supporting that the WRK bentonite can be used as the buffer material preventing the U migration in the SNF repository. Relatively low U adsorption efficiency (<45%) for the WRK bentonite was acquired at pH 3 and 7 because the U exists as various species in solution depending on pH and thus its U adsorption mechanisms are different due to the U speciation. Based on experimental results and previous studies, the main U adsorption mechanisms of the WRK bentonite were understood in viewpoint of the chemical adsorption. At the acid conditions (<pH 3), the U is apt to adsorb as forms of UO22+, mainly due to the ionic bond with Si-O or Al-O(OH) present on the WRK bentonite rather than the ion exchange with Ca2+ among layers of the WRK bentonite, showing the relatively low U adsorption efficiency. At the alkaline conditions (>pH 7), the U could be adsorbed in the form of anionic U-hydroxy complexes (UO2(OH)3-, UO2(OH)42-, (UO2)3(OH)7-, etc.), mainly by bonding with oxygen (O-) from Si-O or Al-O(OH) on the WRK bentonite or by co-precipitation in the form of hydroxide, showing the high U adsorption. At pH 7, the relatively low U adsorption efficiency (42%) was acquired in this study and it was due to the existence of the U-carbonates in solution, having relatively high solubility than other U species. The U adsorption efficiency of the WRK bentonite can be increased by maintaining a neutral or highly alkaline condition because of the formation of U-hydroxyl complexes rather than the uranyl ion (UO22+) in solution, and by restraining the formation of U-carbonate complexes in solution.

      • KCI등재

        An Experimental Study on the Erosion of a Compacted Calcium Bentonite Block

        Min-Hoon Baik,Won Jin Cho 한국방사성폐기물학회 2005 방사성폐기물학회지 Vol.3 No.4

        벤토나이트는 낮은 침투성, 높은 수착성, 자체밀봉특성, 내구성 등으로 인해 고준위 방사성 폐기물 처분을 위한 지하처분장에서 완충재 후보물질로 고려되고 있다. 적절한 처분장 조건에서 국내 Ca-벤토나이트에 대하여 지하수 침식에 의한 벤토나이트 입자의 발생 가능성과 발생된 벤토나이트 입자들의 영향에 대한 실험적 연구를 수행하였다. 실험결과 비록 벤토나이트의 팽윤압에 의한 암반 균열로의 벤토나이트의 침투는 적었지만 벤토나이트/화강암 경계에서 벤토나이트 입자가 발생될 수 있고 지하수 흐름에 의해 유동될 수 있음을 보였다. 압축된 벤토나이트 블록으로부터 이러한 벤토나이트 입자들의 유동화에는 각기 다른 과정들이 기여하고 있음을 확인하였다. 유량이 크면 클수록, 유출되는 벤토나이트 입자들의 농도가 높게 나타났다. 따라서 실험결과는 지하수 흐름에 의한 벤토나이트 표면의 침식은 침투과정과 함께 화강암 균열에서의 벤토나이트 입자들을 유동시키는 주요한 과정임을 보여준다. Bentonite has been considered as a candidate buffer material in the underground repository for the disposal of high-level radioactive waste because of its low permeability, high sorption capacity, self sealing characteristics, and durability in nature. In this study, the potential for separation of bentonite particles caused by the groundwater erosion was studied experimentally for a Korean Ca-bentonite under the relevant repository conditions. Results showed that bentonite particles can be generated at the bentonite/granite interface and mobilized by the water flow although the intrusion of bentonite into fracture by swelling pressure was observed to be small. Different processes of mobilization of theses colloids from the compacted bentonite block have been identified in this study. The concentration of particles eluted in water was increased as the flow rate increased. Thus the result reveals that the erosion of the bentonite surface due to the groundwater flow together with intrusion processes is the main mechanism that can mobilize bentonite colloids in the fracture of the granite.

      • KCI등재

        지중 열교환기용 벤토나이트 뒤채움재의 화학적, 물리적 영향 요소에 관한 연구

        이철호,위지혜,박문서,최항석,손병후 한국지반공학회 2010 한국지반공학회논문집 Vol.26 No.12

        Bentonite-based grout has been widely used to seal a borehole constructed for a closed-loop vertical ground heat exchanger in a geothermal heat pump system (GHP) because of its high swelling potential and low hydraulic conductivity. Three types of bentonites were compared one another in terms of viscosity and thermal conductivity in this paper. The viscosity and thermal conductivity of the grouts with bentonite contents of 5%, 10%, 15%, 20% and 25% by weight were examined to take into account a variable water content of bentonite grout depending on field conditions. To evaluate the effect of salinity (i.e., concentration of NaCl : 0.1M, 0.25M, and 0.5M) on swelling potential of the bentonite-based grouts, a series of volume reduction tests were performed. In addition, if the viscosity of bentonite-water mixture is relatively low, particle segregation can occur. To examine the segregation phenomenon, the degree of segregation has been evaluated for the bentonite grouts especially in case of relatively low viscosity. From the experimental results, it is found that (1) the viscosity of the bentonite mixture increased with time and/or with increasing the mixing ratio. However, the thermal conductivity of the bentonite mixture did not increase with time but increased with increasing the mixing ratio; (2) If bentonite grout has a relatively high swelling index, the volume reduction ratio in the saline condition will be low; (3) The additive, such as a silica sand, can settle down on the bottom of the borehole if the bentonite has a very low viscosity. Consequently, the thermal conductivity of the upper portion of the ground heat exchanger will be much smaller than that of the lower portion.

      • KCI등재

        칼슘 벤토나이트-모래 혼합차수재의 투수 및 구조 특성에 관한 연구

        윤성열(Seong Yeol Yun),안현규(Hyeon Kyu An),오민아(Minah Oh),이재영(Jai-Young Lee) 한국지반신소재학회 2019 한국지반신소재학회 논문집 Vol.18 No.2

        본 연구에서는 칼슘 벤토나이트를 차수재로 활용하기 위해 칼슘 벤토나이트-모래 혼합물의 투수특성 및 구조를 평가하였다. 본 연구에서는 칼슘 벤토나이트와 모래에 대한 기본적인 물리·화학적 특성 분석, 다짐시험, 투수시험 및 전자주사현미경 분석(SEM)을 진행하였다. 칼슘 벤토나이트의 혼합 비율이 증가함에 따라 칼슘 벤토나이트-모래 혼합물의 건조 밀도, 투수계수는 낮아지고 최적함수비는 증가하였다. 특히, 전자주사현미경 분석은 칼슘 벤토나이트의 비율이 증가함에 따라 칼슘 벤토나이트내 몬모릴로나이트의 면적이 증가하는 것을 확인하였다. 결론적으로, 칼슘 벤토나이트의 혼합비가 40% 이상일 때 매립시설의 차수재 조건(1.0×10<SUP>-7</SUP>cm/sec 이하)을 만족하였다. 본 연구는 차수재로 칼슘 벤토나이트의 이해도를 향상시킬 수 있다. 칼슘 벤토나이트는 40% 이상 혼합 시 나트륨 벤토나이트 7%와 비슷한 투수 특성을 나타낸다. 따라서 칼슘 벤토나이트는 차수재로써 활용이 가능하다. This study was intended to evaluate the water permeability and structure for calcium bentonite-sand mixtures to utilize calcium bentonite as a liner. This study conducted physico-chemical properties tests, compaction tests, permeability test and Scanning Electron Microscopy analysis (SEM) analysis. It was found the higher the ratio of calcium bentonite, the lower the dry density with coefficient of permeability, and the higher the optimum moisture content. In particular, SEM analysis was found the higher the ratio of calcium bentonite, the higher the area of the montmorillonite particles. In conclusion, the optimum coefficient of permeability that finds the landfill liner condition (must be less than 1 × 10<SUP>-7</SUP> cm/sec) was obtained when the ratio of calcium bentonite was 40% or higher. These findings may improve the understanding of the calcium bentonite as a liner. Calcium bentonite shows a similar permeability to sodium bentonite 7% when mixed at 40% or more. Therefore, it is considered that calcium bentonite can be utilized as a liner.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼