RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Numerical study of mono-strand anchorage mechanism under service load

        Marceau, D.,Fafard, M.,Bastien, J. Techno-Press 2004 Structural Engineering and Mechanics, An Int'l Jou Vol.18 No.4

        Anchorage devices play an important role in post-tensioned bridge structures since they must sustain heavy loads in order to permit the transfer of the prestressing force to the structure. In external prestressing, the situation is even more critical since the anchorage mechanisms, with the deviators, are the only links between the structure and the tendons throughout the service life of the structure. The behaviour of anchorage devise may be studied by using the finite element method. To do so, each component of the anchorage must be adequately represented in order to approximate the anchor mechanism as accurately as possible. In particular, the modelling of the jaw/tendon device may be carried out using the real geometry of these two components with an appropriate constitutive contact law or by replacing these components by a single equivalent. This paper presents the numerical study of a mono-strand anchorage device. The results of a comparison between two different representations of the jaw/tendon device, either as two distinct components or as a single equivalent, will be examined. In the double-component setup, the influence of the wedge configuration composing the jaw, and the influence of lubrication of the anchor, will be assessed.

      • SCIESCOPUS

        Constitutive law for wedge-tendon gripping interface in anchorage device - numerical modeling and parameters identification

        Marceau, D.,Fafard, M.,Bastien, J. Techno-Press 2003 Structural Engineering and Mechanics, An Int'l Jou Vol.15 No.6

        Mechanical anchorage devices are generally tested in the laboratory and may be analyzed using the finite element method. These devices are composed of many components interacting through diverse contact interfaces. Generally, a Coulomb friction law is sufficient to take into account friction between smooth surfaces. However, in the case of mechanical anchorages, a gripping system, named herein the wedge-tendon system, is used to anchor the prestressing tendon. The wedge inner surface is made of a series of triangular notches designed to grip the tendon. In this particular case, the Coulomb law is not adapted to simulate the contact interface. The present paper deals with a new constitutive contact/gripping law to simulate the gripping effect. A parameter identification procedure, based on experimental results as well as on a finite element/neural network approach, is presented. It is demonstrated that all parameters have been selected in a satisfactory way and that the proposed constitutive law is well adapted to simulate the wedge gripping effect taking place in a mechanical anchorage device.

      • KCI등재

        Histological analysis on tissues around orthodontically intruded maxillary molars using temporary anchorage devices: A case report

        Hui-Chen Tsai,Julia Yu-Fong Chang,Chia-Chun Tu,Chung-Chen Jane Yao 대한치과교정학회 2023 대한치과교정학회지 Vol.53 No.2

        Before progress was recently made in the application of temporary anchorage devices (TADs) in bio-mechanical design, orthodontists were rarely able to intrude molars to reduce upper posterior dental height (UPDH). However, TADs are now widely used to intrude molars to flatten the occlusal plane or induce counterclockwise rotation of the mandible. Previous studies involving clinical or animal histological evaluation on changes in periodontal conditions after molar intrusion have been reported, however, studies involving human histology are scarce. This case was a Class I malocclusion with a high mandibular plane angle. Upper molar intrusion with TADs was performed to reduce UPDH, which led to counterclockwise rotation of the mandible. After 5 months of upper molar intrusion, shortened clinical crowns were noticed, which caused difficulties in oral hygiene and hindered orthodontic tooth movement. The mid-treatment cone-beam computed tomography revealed redundant bone physically interfering with buccal attachment and osseous resective surgeries were followed. During the surgeries, bilateral mini screws were removed and bulging alveolar bone and gingiva were harvested for biopsy. Histological examination revealed bacterial colonies at the bottom of the sulcus. Infiltration of chronic inflammatory cells underneath the non-keratinized sulcular epithelium was noted, with abundant capillaries being filled with red blood cells. Proximal alveolar bone facing the bottom of the gingival sulcus exhibited active bone remodeling and woven bone formation with plump osteocytes in the lacunae. On the other hand, buccal alveolar bone exhibited lamination, indicating slow bone turnover in the lateral region.

      • KCI등재

        Effectiveness of anchorage with temporary anchorage devices during anterior maxillary tooth retraction: A randomized clinical trial

        Stéphane Barthélemi,Alban Desoutter,Fatoumata Souaré,Frédéric Cuisinier 대한치과교정학회 2019 대한치과교정학회지 Vol.49 No.5

        Objective: This study evaluated the efficiency of anchorage provided by temporary anchorage devices (TADs) in maxillary bicuspid extraction cases during retraction of the anterior teeth using a fixed appliance. Methods: Patients aged 12 to 50 years with malocclusion for which bilateral first or second maxillary bicuspid extractions were indicated were included in the study and randomly allocated to the TAD or control groups. Retraction of the anterior teeth was achieved using skeletal anchorage in the TAD group and conventional dental anchorage in the control group. A computed tomography (CT) scan was performed after alignment of teeth, and a second CT scan was performed at the end of extraction space closure in both groups. A three-dimensional superimposition was performed to visualize and quantify the maxillary first molar movement during the retraction phase, which was the primary outcome, and the stability of TAD movement, which served as the secondary outcome. Results: Thirty-four patients (17 in each group) underwent the final analysis. The two groups showed a significant difference in the movement of the first maxillary molars, with less significant anchorage loss in the TAD group than that in the control group. In addition, TAD movement showed only a slight mesial movement on the labial side. On the palatal side, the mesial TAD movement was greater. Conclusions: In comparison with conventional dental anchorage, TADs can be considered an efficient source of anchorage during retraction of maxillary anterior teeth. TADs remain stable when correctly placed in the bone during the anterior tooth retraction phase.

      • KCI등재

        전치부 및 치은의 노출량과 교합평면의 캔팅을 고려한 미니스크류를 이용한 전치열의 원심이동

        백철호(Cheol-Ho Paik) 대한치과의사협회 2019 대한치과의사협회지 Vol.57 No.6

        Many orthodontists face difficulties in aligning incisors in an esthetically critical position, because the individual perception of beauty fluctuates with time and trend. Temporary anchorage device (TAD) can aid in attaining this critical incisor position, which determines an attractive smile, the amount of incisor display, and lip contour. Borderline cases can be treated without extraction and the capricious minds of patients can be satisfied with regard to the incisor position through whole dentition distalization using TAD. Mild to moderate bimaxillary protrusion cases can be treated with TAD-driven en masse retraction without premolar extraction. Patients with Angle’s Class III malocclusion can be the biggest beneficiaries because both sufficient maxillary incisal display, through intrusion of mandibular incisors, and distalization of the mandibular dentition are successfully achieved. In addition, TAD can be used to correct various other malocclusions, such as canting of the occlusal plane and dental/alveolus asymmetry.

      • SCOPUSSCIEKCI등재

        Evaluation of mandibular cortical bone thickness for placement of temporary anchorage devices (TADs)

        Jung-Hoon Kim,Young-Chel Park 대한치과교정학회 2012 대한치과교정학회지 Vol.42 No.3

        Objective: In this study, we measured the cortical bone thickness in the mandibular buccal and lingual areas using computed tomography in order to evaluate the suitability of these areas for application of temporary anchorage devices (TADs) and to suggest a clinical guide for TADs. Methods: The buccal and lingual cortical bone thickness was measured in 15 men and 15 women. Bone thickness was measured 4 mm apical to the interdental cementoenamel junction between the mandibular canine and the 2nd molar using the transaxial slices in computed tomography images. Results: The cortical bone in the mandibular buccal and lingual areas was thicker in men than in women. In men, the mandibular lingual cortical bone was thicker than the buccal cortical bone, except between the 1st and 2nd molars on both sides. In women, the mandibular lingual cortical bone was thicker in all regions when compared to the buccal cortical bone. The mandibular buccal cortical bone thickness increased from the canine to the molars. The mandibular lingual cortical bone was thickest between the 1st and 2nd premolars, followed by the areas between the canine and 1st premolar, between the 2nd premolar and 1st molar, and between the 1st molar and 2nd molar. Conclusions: There is sufficient cortical bone for TAD applications in the mandibular buccal and lingual areas. This provides the basis and guidelines for the clinical use of TADs in the mandibular buccal and lingual areas.

      • KCI등재SCOPUS
      • KCI등재

        Evaluation of mandibular cortical bone thickness for placement of temporary anchorage devices (TADs)

        김정훈,박영철 대한치과교정학회 2012 대한치과교정학회지 Vol.42 No.3

        Objective: In this study, we measured the cortical bone thickness in the mandibular buccal and lingual areas using computed tomography in order to evaluate the suitability of these areas for application of temporary anchorage devices (TADs) and to suggest a clinical guide for TADs. Methods: The buccal and lingual cortical bone thickness was measured in 15 men and 15 women. Bone thickness was measured 4 mm apical to the interdental cementoenamel junction between the mandibular canine and the 2nd molar using the transaxial slices in computed tomography images. Results: Th e cortical bone in the mandibular buccal and lingual areas was thicker in men than in women. In men, the mandibular lingual cortical bone was thicker than the buccal cortical bone, except between the 1st and 2nd molars on both sides. In women, the mandibular lingual cortical bone was thicker in all regions when compared to the buccal cortical bone. Th e mandibular buccal cortical bone thickness increased from the canine to the molars. Th e mandibular lingual cortical bone was thickest between the 1st and 2nd premolars, followed by the areas between the canine and 1st premolar, between the 2nd premolar and 1st molar, and between the 1st molar and 2nd molar. Conclusions: Th ere is suffi cient cortical bone for TAD applications in the mandibular buccal and lingual areas. Th is provides the basis and guidelines for the clinical use of TADs in the mandibular buccal and lingual areas.

      • SCOPUSSCIEKCI등재

        Evaluation of mandibular cortical bone thickness for placement of temporary anchorage devices (TADs)

        Kim, Jung-Hoon,Park, Young-Chel The Korean Association Of Orthodontists 2012 대한치과교정학회지 Vol.42 No.3

        Objective: In this study, we measured the cortical bone thickness in the mandibular buccal and lingual areas using computed tomography in order to evaluate the suitability of these areas for application of temporary anchorage devices (TADs) and to suggest a clinical guide for TADs. Methods: The buccal and lingual cortical bone thickness was measured in 15 men and 15 women. Bone thickness was measured 4 mm apical to the interdental cementoenamel junction between the mandibular canine and the 2nd molar using the transaxial slices in computed tomography images. Results: The cortical bone in the mandibular buccal and lingual areas was thicker in men than in women. In men, the mandibular lingual cortical bone was thicker than the buccal cortical bone, except between the 1st and 2nd molars on both sides. In women, the mandibular lingual cortical bone was thicker in all regions when compared to the buccal cortical bone. The mandibular buccal cortical bone thickness increased from the canine to the molars. The mandibular lingual cortical bone was thickest between the 1st and 2nd premolars, followed by the areas between the canine and 1st premolar, between the 2nd premolar and 1st molar, and between the 1st molar and 2nd molar. Conclusions: There is sufficient cortical bone for TAD applications in the mandibular buccal and lingual areas. This provides the basis and guidelines for the clinical use of TADs in the mandibular buccal and lingual areas.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼