RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 음성지원유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Three-Phase PFC Rectifier by Means of Three Single-Phase Passive PFC Units

        Shin-ich MOTEGI,Yasuyuki NISHIDA 전력전자학회 2019 ICPE(ISPE)논문집 Vol.2019 No.5

        This study deals with a three-phase diode rectifier which offers very fine PFC nature. The rectifier consists of three units of single-phase PFC diode rectifier with L-C network on the ac input side. Most of all practically available combinations of inductance and capacitance of the L-C network have been investigated through simulations and useful combinations and performance of the new rectifier are obtained and described in this paper. According to the simulation studies, the Total-Power-Factor of the input is more than 99 [%] and Total-Harmonic-Distortion of input current is approximately 3 [%]. It is shown in this paper that the new rectifier is practically advantageous than ordinary rectifier, e.g., three-phase bridge diode rectifier, and even well comparable to double three-phase bridge diode rectifier.

      • KCI등재

        Two Low-Loss Large Current Rectifiers Based on Low KVA Rating Wye-Connected Autotransformers

        Fangang Meng,Zhongcheng Man,Quanhui Li,Lei Gao 전력전자학회 2018 JOURNAL OF POWER ELECTRONICS Vol.18 No.6

        In this paper, two large current rectifiers are proposed based on two wye-connected autotransformers. The requirements of the ideal large current rectifier are analyzed, and it is concluded that the large current rectifier has a higher power density and a higher energy conversion efficiency when it is made up of two three-phase half-wave rectifiers and a wye-connected autotransformer. According to theoretical analysis results, the two novel wye-connected autotransformers are designed to feed two three-phase half-wave rectifiers. The two autotransformers can generate two groups of three-phase voltages with a 60o phase shifting, and their kVA ratings account for 95% and 80% of the load power, respectively. These values are less than those of a double star rectifier at 30% and 46%. From the input mains and output side, the power quality of the proposed rectifiers is the same as that of the double star rectifier. Some experiments validate the correctness of the theoretical analysis.

      • SCIESCOPUSKCI등재

        Novel Average Value Model for Faulty Three-Phase Diode Rectifier Bridges

        Rahnama, Mehdi,Vahedi, Abolfazl,Alikhani, Arta Mohammad,Nahid-Mobarakeh, Babak,Takorabet, Noureddine The Korean Institute of Power Electronics 2019 JOURNAL OF POWER ELECTRONICS Vol.19 No.1

        Rectifiers are widely used in industrial applications. Although detailed models of rectifiers are usually used to evaluate their performance, they are complex and time-consuming. Therefore, the Average Value Model (AVM) has been introduced to meet the demand for a simple and accurate model. This type of rectifier modeling can be used to simplify the simulations of large systems. The AVM of diode rectifiers has been an area of interest for many electrical engineers. However, healthy diode rectifiers are only considered for average value modeling. By contrast, faults occur frequently on diodes, which eventually cause the diodes to open-circuit. Therefore, it is essential to model bridge rectifiers under this faulty condition. Indeed, conventional AVMs are not appropriate or accurate for faulty rectifiers. In addition, they are significantly different in modeling. In this paper, a novel application of the parametric average value of a three-phase line-commutated rectifier is proposed in which one diode of the rectifier is considered open-circuited. In order to evaluate the proposed AVM, it is compared with experimental and simulation results for the application of a brushless synchronous generator field. The results clearly demonstrate the accuracy of the proposed model.

      • SCOPUSKCI등재

        Rectifier Design Using Distributed Greinacher Voltage Multiplier for High Frequency Wireless Power Transmission

        Joonwoo Park,Youngsub Kim,Young Joong Yoon,Joonho So,Jinwoo Shin 한국전자파학회JEES 2014 Journal of Electromagnetic Engineering and Science Vol.14 No.1

        This paper discusses the design of a high frequency Greinacher voltage multiplier as rectifier; it has a greater conversion efficiency and higher output direct current (DC) voltage at high power compared to a simple halfwave rectifier. Multiple diodes in the Greinacher voltage multiplier with distributed circuits consume excited power to the rectifier equally, thereby increasing the overall power capacity of the rectifier system. The proposed rectifiers are a Greinacher voltage doubler and a Greinacher voltage quadrupler, which consist of only diodes and distributed circuits for high frequency applications. For each rectifier, the RF-to-DC conversion efficiency and output DC voltage for each input power and load resistance are analyzed for the maximum conversion efficiency. The input power with maximum conversion efficiency of the designed Greinacher voltage doubler and quadrupler is 3 and 7 dB higher, respectively, than that of the halfwave rectifier.

      • 불평형 전원전압을 갖는 정류시스템에서 출력필터에 따른 입력 특성 분석

        강수현,김상훈 강원대학교 산업기술연구소 2005 産業技術硏究 Vol.25 No.B

        The rectifier characteristics and the quality of the input current worsens with the increase of unbalances or harmonics of the supply voltages. Rectifier input current harmonics interfere with proper power system operation, reduce rectifier power factor, and limit the power available from a given source. It is of importance to select appropriately the rectifier's outpur filter inductance to determine the rectifier input current waveform, the input current harmonics, and the power factor. This paper presents a quantitative analysis of single and three phase rectifier input current harmonics, total harmonic distortion, and power factor as a function of the output filter inductance under balanced and unbalanced conditions. Also, its performance under the supply voltage including harmonics be investigated. These results provide a reference for selecting resonable rectifier's output filter inductance for given harmonics or power factor criterion.

      • KCI등재

        지하매설 및 해양 금속구조물 음극방식용 모듈 타입 스위칭 정류기

        문상호,김보경,김인동,노의철,권영원,정성우,임헌호 전력전자학회 2002 전력전자학회 논문지 Vol.7 No.6

        Cathodic protection is widely used to prevent corrosion of steel materials buried in the underground and sea. As a rectifier for cathodic protection, the conventional phase-controlled rectifiers have been used so far in spite of such shortcomings as large volume, heavy weight and poor power factor. In order to overcome such disadvantages, this paper proposes a new module-type switching rectifier for cathodic protection, which is composed of two parts, namely, AC/DC converter and module-type DC/DC converter. The AC/DC converter is a single-phase IGBT PWM rectifier, thus resulting in almost unity power factor and controlled DC output voltage. The module-type DC/DC converter operates under ZVS/ZCS switching condition to permit high frequency switching operation. It enables to use high-frequency transformer for electrical isolation, thus reducing volume and weight of overall system and improving system efficiency. It should be anticipated that the proposed rectifier techniques apply to the similar technical areas. 음극방식은 지하매설 및 해양 금속 구조물의 부식을 방지하기 위해 가장 많이 사용되고 있는 방식법이다. 기존의 음극방식용 정류기는 SCR 위상제어 정류기로 구성되어 입력단 역율이 낮으며, 부피와 무게가 큰 단점을 지니고 있다. 본 논문에서는 이러한 문제를 해결하기 위해 새로운 음극방식용 모듈타입 스위칭 정류기를 제안한다. 제안한 정류기 회로는 크게 두 부분, 즉 한 대로 구성된 AC/DC 컨버터부와 네 대로 구성된 Module Type DC/DC 컨버터부로 되어 있다. AC/DC 컨버터는 IGBT PWM Rectifier로서 입력전압의 역률을 거의 1로 제어하고 있으며 또한 DC Link 전압을 일정하게 제어하고 있다. Module Type DC/DC 컨버터는 ZCS/ZVS 스위칭 동작을 통하여 스위칭 손실 감소와 함께 고주파 동작을 가능하게 하여, 입력측과 출력측의 전기적 절연을 위한 변압기로 고주파 변압기를 사용할 수 있게 하였다. 이로 인해 시스템의 부피와 무게를 현저히 감소시켰다. 본 논문에서 개발한 방식용 정류기 기술은 다른 유사 분야에의 적용도 가능할 것으로 기대된다.

      • SCIESCOPUSKCI등재

        Two Low-Loss Large Current Rectifiers Based on Low KVA Rating Wye-Connected Autotransformers

        Meng, Fangang,Man, Zhongcheng,Li, Quanhui,Gao, Lei The Korean Institute of Power Electronics 2018 JOURNAL OF POWER ELECTRONICS Vol.18 No.6

        In this paper, two large current rectifiers are proposed based on two wye-connected autotransformers. The requirements of the ideal large current rectifier are analyzed, and it is concluded that the large current rectifier has a higher power density and a higher energy conversion efficiency when it is made up of two three-phase half-wave rectifiers and a wye-connected autotransformer. According to theoretical analysis results, the two novel wye-connected autotransformers are designed to feed two three-phase half-wave rectifiers. The two autotransformers can generate two groups of three-phase voltages with a 60o phase shifting, and their kVA ratings account for 95% and 80% of the load power, respectively. These values are less than those of a double star rectifier at 30% and 46%. From the input mains and output side, the power quality of the proposed rectifiers is the same as that of the double star rectifier. Some experiments validate the correctness of the theoretical analysis.

      • KCI등재

        IGBT PWM Rectifier의 각상 개별제어 알고리즘에 관한 연구

        김승호(Kim, Seung-Ho),박재범(Park, Jaebeom),태동현(Tae, Dong-Hyun),김승종(Kim, Seung-Jong),송중호(Song, Joong-Ho),노대석(Rho Dae-Seok) 한국산학기술학회 2016 한국산학기술학회논문지 Vol.17 No.4

        최근 UPS의 효율을 높이기 위하여 무변압기형 UPS의 사용이 증가되고 있다. 하지만 무변압기형 UPS는 입·출력 구조상 문제로 인해 3상4선식의 IGBT PWM 정류기가 필요하며 이는 기존의 3상3선식 PWM 정류기의 PFC 제어기법으로는 중성선 전류 문제로 동작이 되지 않으므로 3상4선식 PWM 정류기의 특성에 맞는 적절한 PWM 제어기법이 요구되고 있다. 3상4선식 IGBT PWM 정류기의 제어를 위한 제어기법으로는 각상 개별제어 기법과 3D SVM 기법이 있지만 두 방식 모두 장단점이 존재한다. 각상 개별제어 기법은 제어가 불안정하고 3D SVM 기법은 입력 측 인덕터의 L값이 상당히 커져야하는 문제점을 가지고 있다. 따라서 본 논문에서는 기존의 각상 개별제어 방식과 d-q 제어 알고리즘을 접목시켜 동기좌표계상에서 직류로 제어하는 3상4선식 IGBT PWM 정류기 제어기법을 제안하였다. 또한 본 논문에서 제안한 3상4선식 IGBT의 PWM 정류기 제어 알고리즘을 바탕으로 시뮬레이션과 실험을 수행 하였다. 시뮬레이션을 수행한 결과, 3상4선식 IGBT PWM 정류 기를 안정적으로 제어하고 중성선 전류를 줄일 수 있어, 본 논문에서 제안한 방식의 유효성을 확인하였다. Recently, the use of transformer-less UPS has increased to improve the efficiency of UPS. However, transformer-less UPS is required in three-phase four-wire input IGBT PWM rectifier and the existing three-phase three-wire PFC algorithm cannot be applied in the three-phase four-wire system due to the neutral current problem of UPS input. To control the three-phase four-wire input IGBT PWM rectifier, there are two existing algorithms: 3D SVM and single phase control method. These two algorithms have advantages/disadvantages in controlling the rectifier. The single phase control method is unstable for controlling the rectifier and the 3D SVM method has a problem that must increase the L value of the input-side inductor considerably. Therefore, this paper proposes digital single phase control technology and another new algorithm considering the d-q control, to improve the characteristics of the existing control algorithm. In addition, this paper performed a simulation and experiment based on the proposed control algorithm. The simulation results showed that the proposed technology can control three-phase four-wire IGBT PWM rectifier in a stable manner and can also reduce the neutral current. The proposed algorithm is a useful tool for controlling the three-phase four-wire IGBT PWM rectifier.

      • KCI등재

        3상 Z-소스 PWM 정류기의 입력 AC 전압 센서리스 제어

        한근우(Keun-Woo Han),정영국(Young-Gook Jung),임영철(Young-Cheol Lim) 대한전기학회 2013 전기학회논문지 Vol.62 No.3

        Respect to the input AC voltage and output DC voltage, conventional three-phase PWM rectifier is classified as the voltage type rectifier with boost capability and the current type rectifier voltage with buck capability. Conventional PWM rectifier can not at the same time the boost and buck capability and its bridge is weak in the shoot-through state. These problems can be solved by Z-source PWM rectifier which has all characteristic of voltage and current type PWM rectifier. By shoot-through duty ratio control, the Z-source PWM rectifier can buck and boost at the same time, also, there is no need to consider the dead time. This paper proposes the input AC voltage sensorless control method of a three-phase Z-source PWM rectifier in order to accomplish the unity input power factor and output DC voltage control. The proposed method is estimated the input AC voltage by using input AC current and output DC voltage, hence, the sensor for the input AC voltage detection is no needed. comparison of the estimated and detected input AC voltage, estimated phase angle of the input voltage, the output DC voltage response for reference value, unity power factor, FFT(Fast Fourier Transform) of the estimated voltage and efficiency are verified by PSIM simulation.

      • KCI등재

        WPC/A4WP 무선전력전송을 위한 정류기 설계

        박준호,문용,Park, Joonho,Moon, Yong 한국전기전자학회 2018 전기전자학회논문지 Vol.22 No.2

        이 논문에서는 WPC / A4WP 무선 전력 전송을 위한 정류기가 설계하였다. 설계된 정류기는 WPC (무선 전력 컨소시엄) 및 A4WP (무선 전력 연합)를 모두 지원하며 전파 브리지 정류기로 설계되었다. WPC는 100kHz ~ 205kHz의 주파수에서 전력을 전송하고 A4WP는 6.75MHz의 주파수에서 전력을 전송한다. 브리지 정류기는 다이오드 대신 MOSFET을 사용하기 때문에 출력 전압이 입력 전압보다 높으면 역전류가 흐르고 효율에 영향을 미친다. 따라서 MOSFET을 통해 흐르는 전류를 감지하고 역전류를 차단하는 역전류 검출기를 추가했다. 주파수 판별기는 주파수 대역이 다르기 때문에 사용된다. 설계된 정류기는 CMOS $0.35{\mu}m$ 고전압 공정을 사용하여 설계되었다. 입력 전압은 최대 18V이며 100kH ~ 205kHz, 6.78MHz 주파수에서 작동한다. 최대 효율은 94.8 %이고 최대 전력 공급은 5.78W 이다. In this paper, a rectifier for WPC / A4WP wireless power transmission is designed. The proposed rectifier supports both WPC (Wireless Power Consortium) and A4WP (Alliance For Wireless Power) and is designed with full-bridge rectifier. WPC transmits power at the frequency of 100kHz to 205kHz and A4WP at the frequency of 6.75MHz. Since the bridge rectifier uses a MOSFET instead of a diode, the reverse current flows and the efficiency is affected if the output voltage is higher than the input voltage. Therefore, we added the reverse current detector that detects the current flowing through the MOSFET and shut off the reverse current. The frequency discriminator is used because the rectifier has different frequency band. The proposed rectifier was designed using $0.35{\mu}m$ CMOS high voltage process. The input voltage is up to 18V and the rectifier operates at 100kH to 205kHz, 6.78MHz frequency. The maximum efficiency is 94.8% and the maximum power transfer is 5.78W.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼