RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Overtopping Failure Process and Core Wall Fracture Mechanism of a New Concrete Core Wall Dam

        You-ming Zuo,Jia-wen Zhou,Hai-bo Li,Jie-yuan Zhang,Chang Tan,Xiaodong Wang,Yu-shan Wang,Yue Zhou 대한토목학회 2024 KSCE Journal of Civil Engineering Vol.28 No.5

        Concrete core wall dams have emerged as a cost-effective alternative to the reconstruction of old dams. However, the flooding mechanism and flood line of these dams differ significantly from traditional earth and rockfill dams due to the concrete core wall functioning as reinforcement. This study presents model tests that simulate the overtopping failure of earth and rockfill dams with concrete core walls of various thicknesses. The hydrologic curve and two-dimensional evolution of the breach are analyzed, and mechanical analysis examines the relationship between core wall thickness and free face during core wall failure. Results indicate that the presence of the concrete core wall shifts the overtopping failure mode to the scour pit failure mode. The scour pit failure mode occurs when upstream water scours the downstream core wall to form scour holes and free faces. Continuous scouring increases the depth of the free face, ultimately causing the moment between the two sides of the core wall to exceed the bending moment of the core wall, resulting in fracture. The study provides a theoretical basis for the design of core walls for this new type of dam.

      • KCI등재

        Temperature Field Reconstruction of Concrete Dams based on Distributed Optical Fiber Monitoring Data

        Huawei Zhou,Zhiguo Pan,Zhipeng Liang,Chunju Zhao,Yihong Zhou,Fang Wang 대한토목학회 2019 KSCE JOURNAL OF CIVIL ENGINEERING Vol.23 No.5

        Mastering the real temperature distribution of the concrete dam is the basis for solving the problem of temperature control and crack prevention. In this paper, Distributed Temperature Sensing (DTS) technology was applied to temperature monitoring of a higharch dam under construction in southwest China. In order to obtain a more comprehensive temperature distribution of the dam, optical fiber layout principles for arch dams were studied, and horizontal and vertical optical fiber layout schemes were first proposed according to these principles. The real temperature variation processes of the dam were obtained in real time with a line temperature measurement pattern instead of a point temperature measurement pattern. Additionally, a framework of distributed optical fiber data acquisition and remote transmission was proposed. Interconnection of multiple DTS hosts and remote transmission of temperature data were realized. Then, two-dimensional temperature fields of a typical dam block in different ages and longitudinal profiles of dam blocks with embedded fibers were reconstructed based on large amounts of temperature monitoring data and the Kriging difference algorithm. Temperature field reconstruction results showed that the temperature distribution law of the concrete arch dam was in accordance with the actual situation.

      • KCI등재

        Riemann 해법을 이용한 댐 붕괴파의 전파 해석

        김병현(Kim Byung Hyun),한건연(Han Kun Yeon),안기홍(Ahn Ki Hong) 대한토목학회 2009 대한토목학회논문집 B Vol.29 No.5B

        댐 붕괴로 인한 극한홍수가 발생하였을 경우, 홍수경보에 대한 대응시간은 일반적인 홍수의 경우보다 훨씬 짧다. 수치모형은 홍수파의 전파양상을 예측하고, 범람지역, 홍수파 도달시간 그리고 침수심 등에 관한 정보를 제공하는데 있어 강력한 도구가 될 수 있다. 그러나 댐 붕괴로 인한 홍수파의 전파는 불연속 흐름이나 마른하도의 전파를 포함하고 있으므로, 수학적으로 표현하기 어려운 경우가 많다. 그럼에도 불구하고 최근에 유한체적기법을 이용하여 댐 붕괴로 인한 홍수범람을 모의하기 위한 수치모형의 개발이 많이 이루어졌다. 유한체적기법은 적분보존형 방정식을 기본으로 하고 있으므로, 불연속 흐름이나 충격파의 해석에 용이하다. 따라서, 본 연구에서는 2차원 보존형 천수방정식의 해석을 위해 유한체적기법과 Riemann 근사해법을 이용한 수치모형을 개발하였다. 그리고 예측단계와 수정단계에서 연속방정식과 운동량 방정식의 보존변수 재구성을 위해 수면경사법과 연계한 MUSCL 기법을 적용하여 시간과 공간에서 2차정확도를 얻었다. 개발한 유한체적모형을 2차원 부분적 댐 붕괴 해석 및 삼각형 융기를 가진 하도에 대한 댐 붕괴 해석에 적용하고, 적용결과를 실험자료 및 기존 연구자의 계산결과와 비교하여 개발모형을 검증하였다. When Catastrophic extreme flood occurs due to dam break, the response time for flood warning is much shorter than for natural floods. Numerical models can be powerful tools to predict behaviors in flood wave propagation and to provide the information about the flooded area, wave front arrival time and water depth and so on. But flood wave propagation due to dam break can be a process of difficult mathematical characterization since the flood wave includes discontinuous flow and dry bed propagation. Nevertheless, a lot of numerical models using finite volume method have been recently developed to simulate flood inundation due to dam break. As Finite volume methods are based on the integral form of the conservation equations, finite volume model can easily capture discontinuous flows and shock wave. In this study the numerical model using Riemann approximate solvers and finite volume method applied to the conservative form for two-dimensional shallow water equation was developed. The MUSCL scheme with surface gradient method for reconstruction of conservation variables in continuity and momentum equations is used in the predictor-corrector procedure and the scheme is second order accurate both in space and time. The developed finite volume model is applied to 2D partial dam break flows and dam break flows with triangular bump and validated by comparing numerical solution with laboratory measurements data and other researcher's data.

      • KCI등재

        Customized product design information feedback technology based on tentative design chain reconstruction

        Lemiao Qiu,Huifang Zhou,Zili Wang,Yiming Zhang,Shuyou Zhang,Longwu Pan 대한기계학회 2022 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.36 No.12

        The design process of customized products involves dynamic feedback on customer requirements, design alterations, design knowledge, and other information. Current technologies for designing customized products focus on implementing product functions, but are short of effective support for design information feedback. The paper introduces a feedback technology of customized product design information based on tentative design chain reconstruction, whereby a tentative design chain and a corresponding design assignment matrix (DAM) are built in accordance with the logical relationship between the design assignments of the customized product. The tentative design chain is reconstructed through matrix decomposition to optimize the implementation path of the design assignments. Based on the reciprocal relationship between information transfer and feedback path for the design of a customized product, the feedback path of the customized product design information is extracted. The implementation method for feedback are put forward so that the design strategy of the customized product can be adjusted promptly with the feedback information between assignments. The feedback technology of the customized product design information based on the tentative design chain reconstruction is verified by application in the design of the elevator traction sheave. The results show that it helps to reduce the degree of the cross correlation between design assignments, and simplifies the design process of the elevator traction wheel.

      • KCI등재
      • SCOPUSKCI등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼