RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Residual Strength of L-shaped Steel Reinforced Concrete Columns after Exposure to High Temperatures

        Yuzhuo Wang,Xu Wang,Guoqiang Li,Jian Jiang,Tiangui Xu 대한토목학회 2021 KSCE JOURNAL OF CIVIL ENGINEERING Vol.25 No.4

        The mechanical behavior of L-shaped steel reinforced concrete (SRC) columns after exposure to high temperatures is investigated by conducting experiments on eight column specimens. The specimens are first heated to a target temperature and are loaded to failure after cooling down to room temperature. The effect of heating duration, loading eccentricities, and loading angles on the temperature distribution, failure mode and residual bearing capacity of the columns is studied. The test results show that L-shaped SRC columns under axial and eccentric loading have a post-high temperature shear and bending failure mode, respectively. The residual bearing capacity of the specimens decreases significantly (up to 1/3) compared to that at room temperature. The residual bearing capacity of L-shaped SRC columns is governed by loading eccentricities, and an eccentricity of 80 mm (0.36) leads to a reduction in residual capacity by 47% of its ambient value. The loading angle has an obvious effect on the damage range of L-shaped SRC columns. A formula for calculating the residual bearing capacity of L-shaped SRC columns under biaxially eccentric compression is proposed and validated against test results.

      • KCI등재

        Factors Influencing Bond Properties in Concrete Encased Steel Columns at High Temperatures

        Yuzhuo Wang,Ziqing Liu,Guoqiang Li,Jian Jiang,Ying Gao,Chuanguo Fu 한국강구조학회 2020 International Journal of Steel Structures Vol.20 No.3

        This paper presents experimental results on factors governing the bond strength between steel and concrete in concrete encased steel (CES) columns at high temperatures. Push-out tests were conducted on 22 CES specimens to investigate the bond strength between concrete and steel under the temperature of 250 °C, while one specimen was tested at room temperatures for comparison. Data obtained from these tests revealed that the bond properties of CES structures between steel and concrete is infl uenced by a number of factors, including concrete strength, concrete cover thickness, stirrup reinforcement ratio, steel ratio and anchorage length of steel at high temperatures. The formulas for predicting the ultimate bond strength and slip between steel and concrete of CES structures are proposed based on the experimental investigations.

      • KCI등재

        Behavior of Prestressed Stayed Steel Columns Under Fire Conditions

        Huanting Zhou,Venkatesh K.R. Kodur,Hebin Nie,Yuzhuo Wang,Mohannad Z. Naser 한국강구조학회 2017 International Journal of Steel Structures Vol.17 No.1

        Prestressed stayed steel columns experience loss of strength and stiffness when exposed to fire conditions. This paper presents results from experimental studies on the behavior of prestressed stayed circular steel columns under fire conditions. Two full scale prestressed stayed steel columns were tested by subjecting the columns to simultaneous gravity (mechanical) loading and fire conditions. In these fire tests, the varied parameters include load level and level of prestressing. Cross sectional temperatures, axial deformations, as well as fire resistance during the fire tests were recorded and measured. The results indicate that prestressed stayed steel columns undergo various failures modes under different combinations of load and prestress ratios. Specifically, load level significantly influence the fire response of prestressed stayed steel columns with higher load level leading to higher contraction and lower fire resistance.

      • KCI등재

        Identification of determinants that mediate binding between Tembusu virus and the cellular receptor heat shock protein A9

        Dongmin Zhao,Qing Tao Liu,Xinmei Huang,Huili Wang,Kaikai Han,,Jing Yang,Keran Bi,Yuzhuo Liu,Lijiao Zhang,Yin Li 대한수의학회 2018 Journal of Veterinary Science Vol.19 No.4

        Heat shock protein A9 (HSPA9), a member of the heat shock protein family, is a putative receptor for Tembusu virus (TMUV). By using Western blot and co-immunoprecipitation assays, E protein domains I and II were identified as the functional domains that facilitate HSPA9 binding. Twenty-five overlapping peptides covering domain I and domain II sequences were synthesized and analyzed by using an HSPA9 binding assay. Two peptides showed the capability of binding to HSPA9. Dot blot assay of truncated peptides indicated that amino acid residues 19 to 22 and 245 to 252 of E protein constitute the minimal motifs required for TMUV binding to HSPA9. Importantly, peptides harboring those two minimal motifs could effectively inhibit TMUV infection. Our results provide insight into TMUV–receptor interaction, thereby creating opportunities for elucidating the mechanism of TMUV entry.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼