RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Constructing mixed matrix membranes for CO2 separation based on light lanthanide fluoride nanosheets with mesoporous structure

        Yanli Zhang,Meixue Zhao,Xu Li,Qingping Xin,Xiaoli Ding,Lizhi Zhao,Hui Ye,Ligang Lin,Hong Li,Yuzhong Zhang 한국공업화학회 2023 Journal of Industrial and Engineering Chemistry Vol.125 No.-

        The incorporation of porous nano-fillers into mixed matrix membranes (MMMs) has a great impact onCO2 separation. In this study, a series of F-Ln (Ln is the Light Lanthanide, Ln = La, Ce, Pr, Nd) nanosheetswith mesoporous structure was fabricated as a filler in Pebax1657 matrix to improve the performance ofCO2 separation. F-Ln nanosheets are uniformly distributed in the membrane and the mesoporous structurecan construct multiple channels for CO2 fast transport in Pebax/F-Ln MMMs. The pore diameter ofnanosheet is in order: F-La > F-Ce > F-Pr > F-Nd, and the smaller pore diameter of nanosheets is beneficialto improve the CO2 separation performance. In humidified conditions, Pebax/F-Nd-6 MMMs show optimumseparation performance among MMMs, and the CO2 permeability is up to 1265 Barrer and CO2/CH4selectivity is 36.7, which are 2.3 times and 1.9 times higher than pure Pebax and approaches 2019 upperbound. Meanwhile, to demonstrate the potential universal applicability of F-Ln nanosheets in CO2 separation,XLPEO/F-Ce MMMs were fabricated to separate CO2/N2 and the performance exceeds the 2019upper bound. The efficient CO2 separation performance of 2D F-Ln nanosheets with mesoporous structurein membranes reveals the potential application of these nanosheets in industrial CO2 separation.

      • KCI등재

        Effects of environmental temperature and age on the elastic modulus of concrete

        Shuzhen Yang,Baodong Liu,Yuzhong Li,Minqiang Zhang 국제구조공학회 2019 Structural Engineering and Mechanics, An Int'l Jou Vol.72 No.6

        Concrete mechanical properties change constantly with age, temperature, humidity and the other environmental factors. This research studies the effects of temperature and age on the development of concrete elastic modulus by a series of prism specimens. Elastic modulus test was conducted at various temperatures and ages in the laboratory to examine the effects of temperature and age on it. The experimental results reveal that the concrete elastic modulus decreases with the rise of temperature but increases with age. Then, a temperature coefficient K is proposed to describe the effects of temperature and validated by existing studies. Finally, on the basis of K, analytical models are proposed to determine the elastic modulus of concrete at a given temperature and age. The proposed models can offer designers an approach to obtain more accurate properties of concrete structures through the elastic modulus modification based on actual age and temperature, rather than using a value merely based on laboratory testing.

      • KCI등재

        Adsorption resin/polyethersulfone membrane used for plasma separation and middle molecular toxins adsorption

        Xiaoyang Hou,Lilan Huang,Han Zhang,Qingping Xin,Hong Li,Hui Ye,Yuzhong Zhang 한국공업화학회 2023 Journal of Industrial and Engineering Chemistry Vol.123 No.-

        Accumulation of endogenous and exogenous toxins in patients with chronic kidney disease increases thekidney burden. The newly developed plasma separation adsorption membranes provide a new model forthe removal of middle molecular toxins. In this study, the adsorption resin LX-1000H is physically pulverizedand blended into polyethersulfone matrixes to prepare adsorption resin/polyethersulfone (AR/PES) membranes by nonsolvent-induced phase separation for plasma separation and middle moleculartoxins absorption. The results show that the static adsorption capacity of AR/PES membrane for lysozyme(a typical mimic of middle molecular toxins) is up to 108.90 mg/g, which is 4 times that of AR. The maximumdynamic adsorption capacity reaches 102.80 mg/g, which is 93.4% of static adsorption. The adsorptionprocess is more consistent with the Langmuir model and the quasi-first-order kinetic model. Thepermeability of bovine serum albumin in simulated blood surpasses 90% and the cattle blood separatedby AR/PES membrane is colorless and transparent. The AR/PES membrane surface presents electronegativeat pH 7.4 and the water wettability is enhanced with the doping amount. No hemolysis and negligibleleakage indicated favorable hemocompatibility. This paper is devoted to providing a strategy forplasma separation and adsorption membranes.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼