RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Nanosponge membrane with 3D-macrocycle b-cyclodextrin as molecular cage to simultaneously enhance antifouling properties and efficient separation of dye/oil mixtures

        Sisi Ma,Ligang Lin,Xinyang Li,Wenying Shi,Xiaofei Zhai,Jing Yang 한국공업화학회 2022 Journal of Industrial and Engineering Chemistry Vol.112 No.-

        Developing multifunctional, efficient and durable membrane for treating complex oily wastewater ishighly desirable but still a challenge due to the severe membrane fouling. Herein, nanosponge membranewith 3D-macrocycle b-cyclodextrin (b-CDs) as molecular cage was manufactured by azide-alkyne clickreaction for oil/water treatment and antifouling properties simultaneously. The macrocyclic ‘molecularcage’ geometry of b-CDs can induce various guest molecules into their cavities. When clickable b-CDN3was fixed onto a clickable EVAL- membrane surface, the hydrophilicity of the membrane was greatlyimproved. Furthermore, the molecular cage–grafted membrane (EVAL-g-CD) showed better antifoulingperformance than a pure EVAL membrane, with lower water flux decline (15%) and higher water fluxrecovery (91%). The flux and separation efficiency values of the EVAL-g-CD membrane were higher than120 Lm2h1 and 99%, respectively. The EVAL-g-CD membrane also exhibited good adsorption performancefor organic pollutants owing to its cavity structure. Furthermore, the membrane showed desirablestability and its rejection remained at 99% after filtration. This proposed 3D membrane strategy based onmolecular cages sheds light on the formation of hydrophilic membrane surfaces and shows great promisefor potential applications such as the separation of oil-in-water emulsions.

      • KCI등재

        A ‘‘micro-explosion” strategy for preparing membranes with high porosity, permeability, and dye/salt separation efficiency

        Xinyang Li,Ligang Lin,Zitian Li,Jing Yang,Wensong Ma,Xu Yang,Xiaopeng Li,Chunhong Wang,Qingping Xin,Kongyin Zhao 한국공업화학회 2023 Journal of Industrial and Engineering Chemistry Vol.119 No.-

        In this study, inspired by ‘‘micro-explosion” strategies, a separation membrane with high porosity andpermeability, and highly efficient separation performance was prepared. With the use of polyvinylidenefluoride (Solvay6015) as membrane material, azodicarbonamide (AC) as an ‘‘explosion center point” tothe casting membrane solution, and NaOH as an ‘‘external stimulus” in the coagulation bath, the twochemicals undergo in-situ foaming reaction to form a loose nanofiltration membrane. FTIR, XPS, andTGA results demonstrated that the decomposition of AC was complete, which produced gases thatincreased the porosity of the membrane. The optimized membrane has a higher flux(101.72 L m2 h1 at 0.3 Mpa), higher negative surface charge, and better mechanical properties underthe premise of separating CR/NaCl. In the separation of pollutants with different molecular weights,the permeation flux of the optimized membrane increased by more than double. This foaming technologywas also applied to another membrane material, ethylene vinyl alcohol, from which we found that themembrane also had higher porosity and better permeability. Together, this paper presents an in-situfoaming method for preparing separation membranes and lays the foundation for solving the trade-offbetween membrane permeability and rejection in dye/salt separation.

      • KCI등재

        Coral stone-inspired superwetting membranes with anti-fouling and self-cleaning properties for highly efficient oil–water separation

        Wensong Ma,Ligang Lin,Jing Yang,Zitian Liu,Xinyang Li,Meina Xu,Xiaopeng Li,Chunhong Wang,Qingping Xin,Kongyin Zhao 한국공업화학회 2023 Journal of Industrial and Engineering Chemistry Vol.120 No.-

        Nowadays, the use of separation membranes to deal with oil–water emulsions has gained popularity. However, oil fouling of membrane surfaces during the separation of oil–water emulsion is still a significantchallenge. In this study, inspired by the biological coral stone structure, the gel layer was firmlyattached to the surface of membrane using a simple co-blending and cross-linking strategy. A superwettingmembrane (PVDF/CD-SA) with a coral stone structure was obtained. The PVDF/CD-SA membranehad a high permeate flux that was 4.2 times higher than that of the original membrane and a high separationefficiency of about 99.2 % for the separation of oil–water emulsion. Furthermore, the membranehad outstanding chemical stability. The fluxes of several different oil-in-water emulsions significantlyimproved, and the separation efficiencies were as high as 98 %. Moreover, the separation efficienciesand contact angles of the membrane remained unchanged after numerous cycles of use. The membraneexhibited excellent superhydrophilicity in air (instantaneous water wetting in air) and superoleophobicityunder water (underwater oil contact angle > 156). Most importantly, the oil was able to automaticallydetach from the surface of membrane, resulting in self-cleaning performance. Therefore, this PVDF/CD-SAmembrane eliminated the problem of oil adhesion, exhibiting excellent potential for practical applicationsin oil–water separation.

      • KCI등재

        Constructing mixed matrix membranes for CO2 separation based on light lanthanide fluoride nanosheets with mesoporous structure

        Yanli Zhang,Meixue Zhao,Xu Li,Qingping Xin,Xiaoli Ding,Lizhi Zhao,Hui Ye,Ligang Lin,Hong Li,Yuzhong Zhang 한국공업화학회 2023 Journal of Industrial and Engineering Chemistry Vol.125 No.-

        The incorporation of porous nano-fillers into mixed matrix membranes (MMMs) has a great impact onCO2 separation. In this study, a series of F-Ln (Ln is the Light Lanthanide, Ln = La, Ce, Pr, Nd) nanosheetswith mesoporous structure was fabricated as a filler in Pebax1657 matrix to improve the performance ofCO2 separation. F-Ln nanosheets are uniformly distributed in the membrane and the mesoporous structurecan construct multiple channels for CO2 fast transport in Pebax/F-Ln MMMs. The pore diameter ofnanosheet is in order: F-La > F-Ce > F-Pr > F-Nd, and the smaller pore diameter of nanosheets is beneficialto improve the CO2 separation performance. In humidified conditions, Pebax/F-Nd-6 MMMs show optimumseparation performance among MMMs, and the CO2 permeability is up to 1265 Barrer and CO2/CH4selectivity is 36.7, which are 2.3 times and 1.9 times higher than pure Pebax and approaches 2019 upperbound. Meanwhile, to demonstrate the potential universal applicability of F-Ln nanosheets in CO2 separation,XLPEO/F-Ce MMMs were fabricated to separate CO2/N2 and the performance exceeds the 2019upper bound. The efficient CO2 separation performance of 2D F-Ln nanosheets with mesoporous structurein membranes reveals the potential application of these nanosheets in industrial CO2 separation.

      • Mapping Longitudinal Development of Local Cortical Gyrification in Infants from Birth to 2 Years of Age

        Li, Gang,Wang, Li,Shi, Feng,Lyall, Amanda E.,Lin, Weili,Gilmore, John H.,Shen, Dinggang Society for Neuroscience 2014 The Journal of neuroscience Vol.34 No.12

        <P>Human cortical folding is believed to correlate with cognitive functions. This likely correlation may have something to do with why abnormalities of cortical folding have been found in many neurodevelopmental disorders. However, little is known about how cortical gyrification, the cortical folding process, develops in the first 2 years of life, a period of dynamic and regionally heterogeneous cortex growth. In this article, we show how we developed a novel infant-specific method for mapping longitudinal development of local cortical gyrification in infants. By using this method, via 219 longitudinal 3T magnetic resonance imaging scans from 73 healthy infants, we systemically and quantitatively characterized for the first time the longitudinal cortical global gyrification index (GI) and local GI (LGI) development in the first 2 years of life. We found that the cortical GI had age-related and marked development, with 16.1% increase in the first year and 6.6% increase in the second year. We also found marked and regionally heterogeneous cortical LGI development in the first 2 years of life, with the high-growth regions located in the association cortex, whereas the low-growth regions located in sensorimotor, auditory, and visual cortices. Meanwhile, we also showed that LGI growth in most cortical regions was positively correlated with the brain volume growth, which is particularly significant in the prefrontal cortex in the first year. In addition, we observed gender differences in both cortical GIs and LGIs in the first 2 years, with the males having larger GIs than females at 2 years of age. This study provides valuable information on normal cortical folding development in infancy and early childhood.</P>

      • Spatial Patterns, Longitudinal Development, and Hemispheric Asymmetries of Cortical Thickness in Infants from Birth to 2 Years of Age

        Li, Gang,Lin, Weili,Gilmore, John H.,Shen, Dinggang Society for Neuroscience 2015 The Journal of neuroscience Vol.35 No.24

        <P>Cortical thickness (CT) is related to normal development and neurodevelopmental disorders. It remains largely unclear how the characteristic patterns of CT evolve in the first 2 years. In this paper, we systematically characterized for the first time the detailed vertex-wise patterns of spatial distribution, longitudinal development, and hemispheric asymmetries of CT at 0, 1, and 2 years of age, via surface-based analysis of 219 longitudinal magnetic resonance images from 73 infants. Despite the dynamic increase of CT in the first year and the little change of CT in the second year, we found that the overall spatial distribution of thin and thick cortices was largely present at birth, and evolved only modestly during the first 2 years. Specifically, the precentral gyrus, postcentral gyrus, occipital cortex, and superior parietal region had thin cortices, whereas the prefrontal, lateral temporal, insula, and inferior parietal regions had thick cortices. We revealed that in the first year thin cortices exhibited low growth rates of CT, whereas thick cortices exhibited high growth rates. We also found that gyri were thicker than sulci, and that the anterior bank of the central sulcus was thicker than the posterior bank. Moreover, we showed rightward hemispheric asymmetries of CT in the lateral temporal and posterior insula regions at birth, which shrank gradually in the first 2 years, and also leftward asymmetries in the medial prefrontal, paracentral, and anterior cingulate cortices, which expanded substantially during this period. This study provides the first comprehensive picture of early patterns and evolution of CT during infancy.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼