RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        An experimental study on the flexural performance of laminated glass

        Xiaokun Huang,Gang Liu,Qiang Liu,Stephen J. Bennison 국제구조공학회 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.49 No.2

        This paper reported an experimental study on creep behaviors of PVB and Ionoplast laminated glass (LG) under load duration of 30 days. The tests were carried out in room temperature (23°C). The study revealed that after sustaining loads for 30 days, the mid-span deflection of PVB LG increased by almost 102% compared with its short term deflection, while that of Ionoplast LG approximately increased by 14%; composite effects between two glass plies in PVB LG gradually reduced with time, but did not fully vanish at the 30th day; two glass plies in Ionoplast LG on the other hand was able to withstand loads as an effective composite section during the entire loading period; the creep behaviors of both LG were not finished yet at the 30th day. In addition to this, also studied was the varying of the bending stresses of PVB and Ionoplast LG under load duration of 2 hours. The tests were carried out in ambient temperatures of 30°C, 50°C and 80°C respectively. It was found that under a given load, although the bending stresses of both LG increased with increasing temperature, for PVB LG the increasing rate of the bending stress decreased with increasing temperature, while for Ionoplast LG the increasing rate of the bending stress increased with increasing temperature.

      • KCI등재

        The flexural performance of laminated glass beams under elevated temperature

        Xiaokun Huang,Gang Liu,Qiang Liu,Stephen J. Bennison 국제구조공학회 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.52 No.3

        A series of experimental work is carried out with the aim to understand the flexural performance of laminated glass (LG) beams using polyvinyl butyral (PVB) and Ionoplast interlayers subjected to short term duration loads in the circumstance of elevated temperature. The study is based on a total of 42 laboratory tests conducted in ambient temperature ranging from 25°C to 80°C. The load duration is kept within 20 seconds. Through the tests, load-stress and load-deflection curves of the LG are established; appropriate analytical models for the LG are indentified; the effective thicknesses as well as the shear transfer coefficients of the LG are semi-empirically determined. The test results show that within the studied temperature range the bending stresses and deflections at mid-span of the LG develop linearly with respect to the applied loads. From 25°C to 80°C the flexural behavior of the PVB LG is found constantly between that of monolithic glass and layered glass having the same nominal thickness; the flexural behavior of the Ionoplast LG is equivalent to monolithic glass of the same nominal thickness until the temperature elevates up to 50°C. The test results reveal that in calculating the effective thicknesses of the PVB and Ionoplast LG, neglecting the shear capacities of the interlayers is uneconomic even when the ambient temperature is as high as 80°C. In the particular case of this study, the shear transfer coefficient of the PVB interlayer is found in a range from 0.62 to 0.14 while that of the Ionoplast interlayer is found in a range from 1.00 to 0.56 when the ambient temperature varies from 25°C to 80°C.

      • KCI등재

        Experimental investigation of multi-layered laminated glass beams under in-plane bending

        Qiang Liu,Xiaokun Huang,Gang Liu,Zhen Zhou,Gang Li 국제구조공학회 2016 Structural Engineering and Mechanics, An Int'l Jou Vol.60 No.5

        Due to its relatively good safety performance and aesthetic benefits, laminated glass (LG) is increasingly being used as load-carrying members in modern buildings. This paper presents an experimental study into one applicational scenario of structural LG subjected to in-plane bending. The aim of the study is to reveal the in-plane behaviors of the LG beams made up of multi-layered glass sheets. The LG specimens respectively consisted of two, three and four plies of glass, bonded together by two prominent adhesives. A total of 26 tests were carried out. From these tests, the structural behaviors in terms of flexural stiffness, load resistance and post-breakage strength were studied in detail, whilst considering the influence of interlayer type, cross-sectional interlayer percentage and presence of shear forces. Based on the test results, analytical suggestions were made, failure modes were identified, corresponding failure mechanisms were discussed, and a rational engineering model was proposed to predict the post-breakage strength of the LG beams. The results obtained are expected to provide useful information for academic and engineering professionals in the analysis and design of LG beams bending in-plane.

      • SCIESCOPUS

        An experimental study on the flexural performance of laminated glass

        Huang, Xiaokun,Liu, Gang,Liu, Qiang,Bennison, Stephen J. Techno-Press 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.49 No.2

        This paper reported an experimental study on creep behaviors of PVB and Ionoplast laminated glass (LG) under load duration of 30 days. The tests were carried out in room temperature ($23^{\circ}C$). The study revealed that after sustaining loads for 30 days, the mid-span deflection of PVB LG increased by almost 102% compared with its short term deflection, while that of Ionoplast LG approximately increased by 14%; composite effects between two glass plies in PVB LG gradually reduced with time, but did not fully vanish at the 30th day; two glass plies in Ionoplast LG on the other hand was able to withstand loads as an effective composite section during the entire loading period; the creep behaviors of both LG were not finished yet at the 30th day. In addition to this, also studied was the varying of the bending stresses of PVB and Ionoplast LG under load duration of 2 hours. The tests were carried out in ambient temperatures of $30^{\circ}C$, $50^{\circ}C$ and $80^{\circ}C$ respectively. It was found that under a given load, although the bending stresses of both LG increased with increasing temperature, for PVB LG the increasing rate of the bending stress decreased with increasing temperature, while for Ionoplast LG the increasing rate of the bending stress increased with increasing temperature.

      • SCIESCOPUS

        The flexural performance of laminated glass beams under elevated temperature

        Huang, Xiaokun,Liu, Gang,Liu, Qiang,Bennison, Stephen J. Techno-Press 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.52 No.3

        A series of experimental work is carried out with the aim to understand the flexural performance of laminated glass (LG) beams using polyvinyl butyral (PVB) and Ionoplast interlayers subjected to short term duration loads in the circumstance of elevated temperature. The study is based on a total of 42 laboratory tests conducted in ambient temperature ranging from $25^{\circ}C$ to $80^{\circ}C$. The load duration is kept within 20 seconds. Through the tests, load-stress and load-deflection curves of the LG are established; appropriate analytical models for the LG are indentified; the effective thicknesses as well as the shear transfer coefficients of the LG are semi-empirically determined. The test results show that within the studied temperature range the bending stresses and deflections at mid-span of the LG develop linearly with respect to the applied loads. From $25^{\circ}C$ to $80^{\circ}C$ the flexural behavior of the PVB LG is found constantly between that of monolithic glass and layered glass having the same nominal thickness; the flexural behavior of the Ionoplast LG is equivalent to monolithic glass of the same nominal thickness until the temperature elevates up to $50^{\circ}C$. The test results reveal that in calculating the effective thicknesses of the PVB and Ionoplast LG, neglecting the shear capacities of the interlayers is uneconomic even when the ambient temperature is as high as $80^{\circ}C$. In the particular case of this study, the shear transfer coefficient of the PVB interlayer is found in a range from 0.62 to 0.14 while that of the Ionoplast interlayer is found in a range from 1.00 to 0.56 when the ambient temperature varies from $25^{\circ}C$ to $80^{\circ}C$.

      • KCI등재

        Molybdenum trioxide impregnated carbon aerogel for gaseous elemental mercury removal

        Yang Ling,Xiaokun Man,Wenbo Zhang,Daolei Wang,Jiang Wu,Qizhen Liu,Mingyan Gu,Yuyu Lin,Ping He,Tao Jia 한국화학공학회 2020 Korean Journal of Chemical Engineering Vol.37 No.4

        A novel gaseous elemental mercury (Hg0) removal agent was successfully synthesized via impregnation method, by using molybdenum trioxide (MoO3) as the active component and carbon aerogel (CA) as the carrier. The as-prepared samples maintained a large specific surface area and excellent pore structure of the pure carbon aerogel, so that MoO3 was better dispersed to obtain enhanced Hg0 removal performance. The maximum efficiency of elemental mercury removal was about 74%, achieved by Mo/C500 sample at 300 oC, while it still had good ability (nearly 60%) in the range of 500-700 oC. The mechanism of mercury oxidation removal was also verified by DFT calculation. This work should help in developing suitable materials for thermocatalytic oxidation of elemental mercury, and also provide some theoretical basis and data support for full-scale application of heavy metal mercury pollution control in coalfired power plants.

      • KCI등재

        Design of Dual-channel Interleaved Phase-shift Full-bridge Converter

        Yanbo Che,Dianmeng Wang,Xiaokun Liu 대한전기학회 2017 Journal of Electrical Engineering & Technology Vol.12 No.4

        A digital dual-channel interleaved phase-shift full-bridge converter is investigated in this paper, and its topology and principle are analyzed. To realize current sharing and stabilize the output voltage, a controller with current sharing loop and closed voltage loop is employed. In addition, current sharing will increase the output current fluctuation and a new digital interleaved driving technology is proposed to reduce the output current ripple. To verify the analysis, simulation and experiments are carried out, which shows the effectiveness of the proposed control strategies.

      • SCIESCOPUSKCI등재

        Design of Dual-channel Interleaved Phase-shift Full-bridge Converter

        Che, Yanbo,Wang, Dianmeng,Liu, Xiaokun The Korean Institute of Electrical Engineers 2017 Journal of Electrical Engineering & Technology Vol.8 No.1

        A digital dual-channel interleaved phase-shift full-bridge converter is investigated in this paper, and its topology and principle are analyzed. To realize current sharing and stabilize the output voltage, a controller with current sharing loop and closed voltage loop is employed. In addition, current sharing will increase the output current fluctuation and a new digital interleaved driving technology is proposed to reduce the output current ripple. To verify the analysis, simulation and experiments are carried out, which shows the effectiveness of the proposed control strategies.

      • Behavior of UHPC-RW-RC wall panel under various temperature and humidity conditions

        Wu, Xiangguo,Yu, Shiyuan,Tao, Xiaokun,Chen, Baochun,Liu, Hui,Yang, Ming,Kang, Thomas H.K. Techno-Press 2020 Advances in concrete construction Vol.9 No.5

        Mechanical and thermal properties of composite sandwich wall panels are affected by changes in their external environment. Humidity and temperature changes induce stress on wall panels and their core connectors. Under the action of ambient temperature, temperature on the outer layer of the wall panel changes greatly, while that on the inner layer only changes slightly. As a result, stress concentration exists at the intersection of the connector and the wall blade. In this paper, temperature field and stress field distribution of UHPC-RW-RC (Ultra-High Performance Concrete - Rock Wool - Reinforced Concrete) wall panel under high temperature-sprinkling and heating-freezing conditions were investigated by using the general finite element software ABAQUS. Additionally, design of the connection between the wall panel and the main structure is proposed. Findings may serve as a scientific reference for design of high performance composite sandwich wall panels.

      • KCI등재

        Porous nano-hydroxyapatites doped into substrate for thin film composite forward osmosis membrane to show high performance

        Weiwen Wang,Yue Guo,Miyu Liu,Xiaokun Song,Jihai Duan 한국화학공학회 2020 Korean Journal of Chemical Engineering Vol.37 No.9

        The incorporation of inorganic nanoparticles into thin film composite forward osmosis (TFC FO) membranes is an effective method to alleviate internal concentration polarization (ICP) and enhance the flux performance of the FO membrane. In this paper, synthetic hydrophilic rod-like porous nano-hydroxyapatites (PNHAs) were doped into polysulfone (PSf) casting solution to form support layer by phase inversion; further interfacial polymerization was carried out to prepare a high performance TFC FO membrane. The results showed that the incorporation of PNHAs not only improved the thickness, porosity, hydrophilicity, and connectivity of the support layer, but also enhanced the roughness of the active layer. The measured mass transfer parameters prove that these improvements were beneficial. Further FO experiments showed that when using deionized water as the feed solution and 1 mol/L NaCl as the draw solution, TFN 0.75 showed higher water flux than TFC FO membrane in both AL-FS (18.5 vs 7.16 L/m2 ·h) and AL-DS (33.26 vs 9.93 L/m2 ·h) modes. Reverse salt flux had not increased significantly. At the same time, TFN 0.75 (697 m vs 1,960 m) showed the smallest structural parameter. This study shows that PNHA is a suitable nanomaterial for mitigating the ICP effect of FO membranes.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼