RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        FK866 inhibits colorectal cancer metastasis by reducing NAD+ levels in cancer-associated fibroblasts

        Xie Hanhan,Lei Yun,Mao Yushan,Lan Jingbin,Yang Jing,Quan Hui,Zhang Tao 한국유전학회 2022 Genes & Genomics Vol.44 No.12

        Background: Extraintestinal metastasis is the main therapeutic challenge for colorectal cancer, the third most common cancer worldwide. Various components of the tumor microenvironment, especially cancer-associated fibroblasts (CAFs), play important roles in tumor metastasis. NAMPT is often overexpressed in tumor tissues and is associated with poorer prognosis. However, the specific roles of NAMPT as well as NAD+ in tumor metastasis are relatively unknown. Therefore, we investigated the role of NAMPT and related NAD+ metabolism in cancer-associated fibroblasts mediated colorectal cancer metastasis. Objective: This study sought to explore the molecular mechanism of FK866 in CAFs cell and colorectal cancer proliferation and metastasis. Methods: The expression of NAMPT in clinical tissues were detected by immunohistochemically analysis. To investigate the role of NAMPT and NAD+ in the interactions between cancer cells and cancer-associated fibroblasts in tumor microenvironment, we isolated CAFs from normal and cancer tissues of clinical colorectal cancer patients. CAFs were treated with different concentrations of FK866, inhibitor of NAMPT, then the NAD+ content was detected using kits, the expression of CAFs activity and stemness indexes was assessed by Western blot and immunofluorescence. The secreted factors of these cells were analyzed by cellular inflammatory factor microarrays. The migration of SW480 after co-cultured with FK866-treated CAFs was detected by Transwell. Finally, high-throughput sequencing was performed to identify the proteins that are associated with the effect of altered NAD+ in CAFs on the migration of cancer cells. Results: NAMPT expression is significantly higher in colorectal cancer tissues, especially in metastatic cancer patients, than that in normal tissues. Inhibition of NAMPT by FK866 in CAFs decreases the expression of activity indicators (α-SMA, PDGFRβ), stemness indicators (BMI-1, OCT4), inflammatory factors and chemokines. Meanwhile, FK866 treatment inhibits the migration ability of SW480 cells co-cultured with CAFs. Finally, high-throughput sequencing reveals that PITX3 are down-regulated after NAD+ reduction in CAFs, which could be reversed by adding NAM, a raw material for NAD+ synthesis. Conclusion: Inhibition of the NAMPT-mediated NAD+ synthesis by FK866 may decrease the activation and stemness of CAFs, reduce the secretion of inflammatory and chemokines by suppressing the expression of PITX3, resulting in the suppression of colorectal cancer metastasis.

      • KCI등재

        Effect of storage time and the level of formic acid on fermentation characteristics, epiphytic microflora, carbohydrate components and in vitro digestibility of rice straw silage

        Zhao Jie,Wang Siran,Dong Zhihao,Li Junfeng,Jia Yushan,Shao Tao 아세아·태평양축산학회 2021 Animal Bioscience Vol.34 No.6

        Objective: The study aimed to evaluate the effect of storage time and formic acid (FA) on fermentation characteristics, epiphytic microflora, carbohydrate components and in vitro digestibility of rice straw silage. Methods: Fresh rice straw was ensiled with four levels of FA (0%, 0.2%, 0.4%, and 0.6% of fresh weight) for 3, 6, 9, 15, 30, and 60 d. At each time point, the silos were opened and sampled for chemical and microbial analyses. Meanwhile, the fresh and 60-d ensiled rice straw were further subjected to in vitro analyses. Results: The results showed that 0.2% and 0.6% FA both produced well-preserved silages with low pH value and undetected butyric acid, whereas it was converse for 0.4% FA. The populations of enterobacteria, yeasts, moulds and aerobic bacteria were suppressed by 0.2% and 0.6% FA, resulting in lower dry matter loss, ammonia nitrogen and ethanol content (p<0.05). The increase of FA linearly (p<0.001) decreased neutral detergent fibre and hemicellulose, linearly (p<0.001) increased residual water soluble carbohydrate, glucose, fructose and xylose. The in vitro gas production of rice straw was decreased by ensilage but the initial gas production rate was increased, and further improved by FA application (p<0.05). No obvious difference of FA application on in vitro digestibility of dry matter, neutral detergent fibre, and acid detergent fibre was observed (p>0.05). Conclusion: The 0.2% FA application level promoted lactic acid fermentation while 0.6% FA restricted all microbial fermentation of rice straw silages. Rice straw ensiled with 0.2% FA or 0.6% FA improved its nutrient preservation without affecting digestion, with the 0.6% FA level best. Objective: The study aimed to evaluate the effect of storage time and formic acid (FA) on fermentation characteristics, epiphytic microflora, carbohydrate components and <i>in vitro</i> digestibility of rice straw silage.Methods: Fresh rice straw was ensiled with four levels of FA (0%, 0.2%, 0.4%, and 0.6% of fresh weight) for 3, 6, 9, 15, 30, and 60 d. At each time point, the silos were opened and sampled for chemical and microbial analyses. Meanwhile, the fresh and 60-d ensiled rice straw were further subjected to <i>in vitro</i> analyses.Results: The results showed that 0.2% and 0.6% FA both produced well-preserved silages with low pH value and undetected butyric acid, whereas it was converse for 0.4% FA. The populations of enterobacteria, yeasts, moulds and aerobic bacteria were suppressed by 0.2% and 0.6% FA, resulting in lower dry matter loss, ammonia nitrogen and ethanol content (p<0.05). The increase of FA linearly (p<0.001) decreased neutral detergent fibre and hemicellulose, linearly (p<0.001) increased residual water soluble carbohydrate, glucose, fructose and xylose. The <i>in vitro</i> gas production of rice straw was decreased by ensilage but the initial gas production rate was increased, and further improved by FA application (p<0.05). No obvious difference of FA application on <i>in vitro</i> digestibility of dry matter, neutral detergent fibre, and acid detergent fibre was observed (p>0.05).Conclusion: The 0.2% FA application level promoted lactic acid fermentation while 0.6% FA restricted all microbial fermentation of rice straw silages. Rice straw ensiled with 0.2% FA or 0.6% FA improved its nutrient preservation without affecting digestion, with the 0.6% FA level best.

      • KCI등재

        Effects of lactic acid bacteria and molasses on fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro ruminal fermentation of rice straw silage

        Jie Zhao,Zhihao Dong,Junfeng Li,Lei Chen,Yunfeng Bai,Yushan Jia,Tao Shao 아세아·태평양축산학회 2019 Animal Bioscience Vol.32 No.6

        Objective: This study was to evaluate the fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro gas production of rice straw ensiled with lactic acid bacteria and molasses. Methods: Fresh rice straw was ensiled in 1-L laboratory silos with no additive control (C), Lactobacillus plantarum (L), molasses (M) and molasses+Lactobacillus plantarum (ML) for 6, 15, 30, and 60 days. After storage, the silages were subjected to microbial and chemical analyses as well as the further in vitro fermentation trial. Results: All additives increased lactic acid concentration, and reduced pH, dry matter (DM) loss and structural carbohydrate content relative to the control (p<0.05). The highest organic acid and residual sugar contents and lignocellulose reduction were observed in ML silage. L silage had the highest V-score with 88.10 followed by ML silage. L and ML silage improved in vitro DM digestibility as compared with other treatments, while in vitro neutral detergent fibre degradability (IVNDFD) was increased in M and ML silage (p<0.05). M silage significantly (p<0.05) increased propionic acid (PA) content and decreased butyric acid content and acetic acid/PA as well as 72-h cumulative gas production. Conclusion: The application of ML was effective for improving both the fermentation quality and in vitro digestibility of rice straw silage. Inclusion with molasses to rice straw could reduce in vitro ruminal gas production.

      • KCI등재

        Conceptual design of a MW heat pipe reactor

        Wu Yunqin,Zheng Youqi,Chen Qichang,Li Jinming,Du Xianan,Wang Yongping,Tao Yushan 한국원자력학회 2024 Nuclear Engineering and Technology Vol.56 No.3

        In recent years, unmanned underwater vehicles (UUV) have been vigorously developed, and with the continuous deepening of marine exploration, traditional energy can no longer meet the energy supply. Nuclear energy can achieve a huge and sustainable energy supply. The heat pipe reactor has no flow system and related auxiliary systems, and the supporting mechanical moving parts are greatly reduced, the noise is relatively small, and the system is simpler and more reliable. It is more favorable for the control of unmanned systems. The use of heat pipe reactors in unmanned underwater vehicles can meet the needs for highly compact, long-life, unmanned, highly reliable, ultra-quiet power supplies. In this paper, a heat pipe reactor scheme named UPR-S that can be applied to unmanned underwater vehicles is designed. The reactor core can provide 1 MW of thermal power, and it can operate at full power for 5 years. UPR-S has negative reactive feedback, it has inherent safety. The temperature and stress of the reactor are within the limits of the material, and the core safety can still be guaranteed when the two heat pipes are failed.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼