RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        HMGB1 regulates autophagy through increasing transcriptional activities of JNK and ERK in human myeloid Leukemia cells

        ( Ming Yi Zhao ),( Ming Hua Yang ),( Liang Chun Yang ),( Yan Yu ),( Min Xie ),( Shan Zhu ),( Rui Kang ),( Dao Lin Tang ),( Zhi Gang Jiang ),( Wu Zhou Yuan ),( Xiu Shan Wu ),( Li Zhi Cao ) 생화학분자생물학회 2011 BMB Reports Vol.44 No.9

        HMGB1 is associated with human cancers and is an activator of autophagy which mediates chemotherapy resistance. We here show that the mRNA levels of HMGB1 are high in leukemia cells and it is involved in the progression of childhood chronic myeloid leukemia (CML). HMGB1 decreases the sensitivity of human myeloid leukemia cells K562 to anti-cancer drug induced death through up-regulating the autophagy pathway, which is confirmed by the observation with an increase in fusion of autophagosomes and autophagolysosomes. When overexpressing HMGB1, both mRNA levels of Beclin-1, VSP34 and UVRAG which are key genes involved in mammalian autophagy and protein levels of p-Bcl-2 and LC3-II are increased. Luciferase assays document that over-expression of HMGB1 increases the transcriptional activity of JNK and ERK, which may be silenced by siRNA. The results suggest that HMGB1 regulates JNK and ERK required for autophagy, which provides a potential drug target for therapeutic interventions in childhood CML. [BMB reports 2011; 44(9): 601-606]

      • Roles of Immunohistochemical Staining in Diagnosing Pulmonary Squamous Cell Carcinoma

        Yan, Yue,Zhang, Ya-Xiong,Fang, Wen-Feng,Kang, Shi-Yang,Zhan, Jian-Hua,Chen, Nan,Hong, Shao-Dong,Liang, Wen-Hua,Tang, Yan-Na,He, Da-Cheng,Wu, Xuan,Zhang, Li Asian Pacific Journal of Cancer Prevention 2015 Asian Pacific journal of cancer prevention Vol.16 No.2

        Background: Differentiating morphologic features based on hematoxylin-eosin (HE) staining is the most common method to classify pathological subtypes of non-small-cell lung cancer (NSCLC). However, its accuracy and inter-observer reproducibility in pathological diagnosis of poorly differentiated NSCLC remained to be improved. Materials and Methods: We attempted to explore the role of immunohistochemistry (IHC) staining in diagnosing pulmonary squamous cell carcinoma (SQCC) with poorly differentiated features by HE staining or with elevated serum adenocarcinoma-specific tumor markers (AD-TMs). We also compared the difference of epidermal growth factor receptor (EGFR) mutation rate between patients with confirmed SQCC and those with revised pathological subtype. Logistic regression analyses were used to test the association between different factors and diagnostic accuracy. Results: A total of 132 patients who met the eligible criteria and had adequate specimens for IHC confirmation were included. Pathological revised cases in poor differentiated subgroup, biopsy samples and high-level AD-TMs cases were more than those with high/moderate differentiation, surgical specimens and normal-level AD-TMs. Moreover, biopsy sample was a significant factor decreasing diagnostic accuracy of pathological subtype (OR, 4.037; 95% CI 1.446-11.267, p=0.008). Additionally, EGFR mutation rate was higher in patients with pathological diagnostic changes than those with confirmed SQCC (16.7% vs 4.4%, p=0.157). Conclusions: Diagnosis based on HE staining only might cause pathological misinterpretation in NSCLC patients with poor differentiation or high-level AD-TMs, especially those with biopsy samples. HE staining and IHC should be combined as pathological diagnostic standard. The occurrence of EGFR mutations in pulmonary SQCC might be overestimated.

      • KCI등재

        Pan-cancer Analysis of Tumor Mutational Burden and Homologous Recombination DNA Damage Repair Using Targeted Next-Generation Sequencing

        Hai-Yun Wang,Ling Deng,Ying-Qing Li,Xiao Zhang,Ya-Kang Long,Xu Zhang,Yan-Fen Feng,Yuan He,Tao Tang,Xin-Hua Yang,Fang Wang 대한암학회 2021 Cancer Research and Treatment Vol.53 No.4

        Purpose Current variability in methods for tumor mutational burden (TMB) estimation and reporting demonstrates the urgent need for a homogeneous TMB assessment approach. Here, we compared TMB distributions in different cancer types using two customized targeted panels commonly used in clinical practice. Materials and Methods TMB spectra of 295- and 1021-gene panels in multiple cancer types were compared using targeted next-generation sequencing (NGS). The TMB distributions across a diverse cohort of 2,332 cancer cases were then investigated for their associations with clinical features. Treatment response data were collected for 222 patients who received immune-checkpoint inhibitors (ICIs) and their homologous recombination DNA damage repair (HR-DDR) and programmed death-ligand 1 (PD-L1) expression were additionally assessed and compared with the TMB and response rate. Results The median TMB between gene panels was similar despite a wide range in TMB values. The highest TMB was eight and 10 in patients with squamous cell carcinoma and esophageal carcinoma according to the classification of histopathology and cancer types, respectively. Twenty-three out of 103 patients (22.3%) were HR-DDR–positive and could benefit from ICI therapy; out of those 23 patients, seven patients had high TMB (p=0.004). Additionally, PD-L1 expression was not associated with TMB or treatment response among patients receiving ICIs. Conclusion Targeted NGS assays demonstrated the ability to evaluate TMB in pan-cancer samples as a tool to predict response to ICIs. In addition, TMB integrated with HR-DDR–positive status could be a significant biomarker for predicting ICI response in patients.

      • SCOPUS
      • A Neural Network Aided Kalman Filtering Approach for SINS/RDSS Integrated Navigation

        HE Xiao-feng,HU Xiao-ping,LU Liang-qing,TANG Kang-hua 한국항해항만학회 2006 한국항해항만학회 학술대회논문집 Vol.1 No.-

        Kalman filtering (KF) is hard to be applied to the SINS (Strap-down Inertial Navigation System)/RDSS (Radio Determination Satellite Service) integrated navigation system directly because the time delay of RDSS positioning in active mode is random. BP (Back-Propagation) Neuron computing as a powerful technology of Artificial Neural Network (ANN), is appropriate to solve nonlinear problems such as the random time delay of RDSS without prior knowledge about the mathematical process involved. The new algorithm betakes a BP neural network (BPNN) and velocity feedback to aid KF in order to overcome the time delay of RDSS positioning. Once the BP neural network was trained and converged, the new approach will work well for SINS/RDSS integrated navigation. Dynamic vehicle experiments were performed to evaluate the performance of the system. The experiment results demonstrate that the horizontal positioning accuracy of the new approach is 40.62 m (1σ), which is better than velocity-feedback-based KF. The experimental results also show that the horizontal positioning error of the navigation system is almost linear to the positioning interval of RDSS within 5 minutes. The approach and its anti-jamming analysis will be helpful to the applications of SINS/RDSS integrated systems.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼