RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        All Sky Camera and Fabry-Perot Interferometer Observations in the Northern Polar Cap

        Wu Qian,Killeen Timothy L.,Solomon Stanley C.,McEwen Donald J.,Guo, Weiji Korea Institute of Ocean ScienceTechnology 2002 Ocean and Polar Research Vol.24 No.3

        We report all sky camera and Fabry-Perot interferometer (FPI) observations of mesospheric gravity waves and a 12-hour wave at Resolute $(75^{\circ}N)$ and a joint observation of 10-hour wave with Eureka $(80^{\circ}N)$. All sky camera observations showed a low occurrence of mesosphere gravity waves during equinoxes, which is similar to the mid-latitude region. A slightly higher occurrence near solstice appears to indicate that gravity waves are not filtered out by the neutral wind in the winter. The FPI observation of a 12-hour wave showed amplitude variations from day to day. The phase of the wave is mostly stable and consistent with the GSWM prediction in the winter. The phase shifts with season as predicted by the GSWM. Four events of the 12-hour wave were found in spring with amplitudes larger than the GSW predictions. The FPls at Resolute and Eureka also observed a wave with period close to 10 hours. The 10-hour wave maybe the result of the non-linear interaction between the semi-diurnal tide and the quasi-two day wave. Further studies are under way. Overall, the combined Resolute and Eureka observation have revealed some new fractures about the mesospheric gravity wave, tidal wave, and other oscillations.

      • Global ionospheric total electron contents (TECs) during the last two solar minimum periods : GLOBAL TECS DURING LAST TWO SOLAR MINIMA

        Jee, Geonhwa,Lee, Han-Byul,Solomon, Stanley C. American Geophysical Union 2014 JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS Vol.119 No.3

        The last solar minimum period was anomalously extended and low in EUV irradiance compared with previous solar minima. It can readily be expected that the thermosphere and the ionosphere must be correspondingly affected by this low solar activity. While there have been unanimous reports on the thermospheric changes, being cooler and lower in its density as expected, the ionospheric responses to low solar activity in previous studies were not consistent with each other, probably due to the limited ionospheric observations used for them. In this study, we utilized the measurements of total electron content (TEC) from TOPEX and JASON-1 satellites during the periods of 1992 to 2010, which includes both the last two solar minimum periods, in order to investigate how the ionosphere responded to the extremely low solar activity during the last solar minimum compared with previous solar minimum. Although the global daily mean TECs show negligible differences between the two solar minimum periods, the global TEC maps reveal that there are significant systematic differences ranging from about -30% to +50% depending on local time, latitude, and season. The systematic variations of the ionospheric responses seem to mainly result from the relative effects of reduced solar EUV production and reduced recombination rate due to thermospheric changes during the last solar minimum period.

      • KCI등재

        All Sky Camera and Fabry-Perot Interferometer Observations in the Northern Polar Cap

        Qian Wu,Timothy L. Killeen,Stanley C. Solomon,Donald J. McEwen,Weiji Guo 한국해양과학기술원 2002 Ocean and Polar Research Vol.24 No.3

        We report all sky camera and Fabry-Perot interferometer (FPI) observations of mesospheric gravity waves and a 12-hour wave at Resolute (75oN) and a joint observation of 10-hour wave with Eureka (80oN). All sky camera observations showed a low occurrence of mesosphere gravity waves during equinoxes, which is similar to the mid-latitude region. A slightly higher occurrence near solstice appears to indicate that gravity waves are not filtered out by the neutral wind in the winter. The FPI observation of a 12-hour wave showed amplitude variations from day to day. The phase of the wave is mostly stable and consistent with the GSWM prediction in the winter. The phase shifts with season as predicted by the GSWM. Four events of the 12-hour wave were found in spring with amplitudes larger than the GSWM predictions. The FPIs at Resolute and Eureka also observed a wave with period close to 10 hours. The 10-hour wave maybe the result of the non-linear interaction between the semi-diurnal tide and the quasi-two day wave. Further studies are under way. Overall, the combined Resolute and Eureka observation have revealed some new features about the mesospheric gravity wave, tidal wave, and other oscillations.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼