RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Improved Power Control of DFIGs Driven by Wind Turbine under Unbalanced Grid Voltage

        Shehata E. G. 대한전기학회 2024 Journal of Electrical Engineering & Technology Vol.19 No.1

        Undesired oscillation components appear in active and reactive powers, electromagnetic torque and DC-link voltage of doubly fed induction generators (DFIGs) connected to unbalanced grid voltage. These components oscillate at double source frequency as a result of negative sequence components in voltage and current. Diferent direct power control (DPC) techniques were studied in literatures to damp these oscillations. However, these techniques require sequence decomposition process, axes transformation of stator voltage/current and estimation of diferent power components which complicate the overall control system. This paper presents a simplifed DPC of DFIGs in stationary reference frame under normal and unbalanced grid voltage. Decomposition process, axes transformation and compensation power terms are totally eliminated. Vector proportional- integral (VPI) controllers are designed to regulate stator active and reactive powers. The performance of the proposed DPC scheme using VPI and proportional-integral-resonant (PIR) controllers is analyzed and compared under different operating conditions. Bode diagram of open loop and closed loop control using VPI and PIR are studied to illustrate stability, steady state and transient response of the two controllers. Also, the performance of proposed technique and previous DPCs designed in synchronous reference frame is compared to prove the validity of proposed one. The results show that proposed DPC using VPI has superior performance in steady state and transient conditions with simple implementation. Undesired oscillation components appear in active and reactive powers, electromagnetic torque and DC-link voltage of doubly fed induction generators (DFIGs) connected to unbalanced grid voltage. These components oscillate at double source frequency as a result of negative sequence components in voltage and current. Different direct power control (DPC) techniques were studied in literatures to damp these oscillations. However, these techniques require sequence decomposition process, axes transformation of stator voltage/current and estimation of different power components which complicate the overall control system. This paper presents a simplified DPC of DFIGs in stationary reference frame under normal and unbalanced grid voltage. Decomposition process, axes transformation and compensation power terms are totally eliminated. Vector proportional- integral (VPI) controllers are designed to regulate stator active and reactive powers. The performance of the proposed DPC scheme using VPI and proportional-integral-resonant (PIR) controllers is analyzed and compared under different operating conditions. Bode diagram of open loop and closed loop control using VPI and PIR are studied to illustrate stability, steady state and transient response of the two controllers. Also, the performance of proposed technique and previous DPCs designed in synchronous reference frame is compared to prove the validity of proposed one. The results show that proposed DPC using VPI has superior performance in steady state and transient conditions with simple implementation.

      • KCI등재

        Seismic pounding effects on adjacent buildings in series with different alignment configurations

        Shehata E. Abdel Raheem,Mohamed Y.M. Fooly,Aly G.A. Abdel Shafy,Yousef A. Abbas,Mohamed Omar,Mohamed M.S. Abdel Latif,Sayed Mahmoud 국제구조공학회 2018 Steel and Composite Structures, An International J Vol.28 No.3

        Numerous urban seismic vulnerability studies have recognized pounding as one of the main risks due to the restricted separation distance between neighboring structures. The pounding effects on the adjacent buildings could extend from slight non-structural to serious structural damage that could even head to a total collapse of buildings. Therefore, an assessment of the seismic pounding hazard to the adjacent buildings is superficial in future building code calibrations. Thus, this study targets are to draw useful recommendations and set up guidelines for potential pounding damage evaluation for code calibration through a numerical simulation approach for the evaluation of the pounding risks on adjacent buildings. A numerical simulation is formulated to estimate the seismic pounding effects on the seismic response demands of adjacent buildings for different design parameters that include: number of stories, separation distances; alignment configurations, and then compared with nominal model without pounding. Based on the obtained results, it has been concluded that the severity of the pounding effects depends on the dynamic characteristics of the adjacent buildings and the input excitation characteristics, and whether the building is exposed to one or two-sided impacts. Seismic pounding among adjacent buildings produces greater acceleration and shear force response demands at different story levels compared to the no pounding case response demands.

      • Seismic response evaluation of fixed jacket-type offshore structures by random vibration analysis

        Shehata E. Abdel Raheem,Elsayed M. Abdel Aal,Aly G.A. AbdelShafy,Mohamed F.M. Fahmy 국제구조공학회 2022 Steel and Composite Structures, An International J Vol.42 No.2

        Offshore platforms in seismically active areas must be designed to survive in the face of intense earthquakes without a global structural collapse. This paper scrutinizes the seismic performance of a newly designed and established jacket type offshore platform situated in the entrance of the Gulf of Suez region based on the API-RP2A normalized response spectra during seismic events. A nonlinear finite element model of a typical jacket type offshore platform is constructed taking into consideration the effect of structure-soil-interaction. Soil properties at the site were manipulated to generate the pile lateral soil properties in the form of load deflection curves, based on API-RP2A recommendations. Dynamic characteristics of the offshore platform, the response function, output power spectral density and transfer functions for different elements of the platform are discussed. The joints deflection and acceleration responses demands are presented. It is generally concluded that consideration of the interaction between structure, piles and soil leads to higher deflections and less stresses in platform elements due to soil elasticity, nonlinearity, and damping and leads to a more realistic platform design. The earthquake-based analysis for offshore platform structure is essential for the safe design and operation of offshore platforms.

      • Numerical analysis for structure-pile-fluid-soil interaction model of fixed offshore platform

        Raheem, Shehata E. Abdel,Aal, Elsayed M. Abdel,AbdelShafy, Aly G.A.,Mansour, Mahmoud H.,Omar, Mohamed Techno-Press 2020 Ocean systems engineering Vol.10 No.3

        In-place analysis for offshore platforms is required to make proper design for new structures and true assessment for existing structures. In addition, ensure the structural integrity of platforms components under the maximum and minimum operating loads and environmental conditions. In-place analysis was carried out to verify the robustness and capability of structural members with all appurtenances to support the applied loads in either operating condition or storm conditions. A nonlinear finite element analysis is adopted for the platform structure above the seabed and the pile-soil interaction to estimate the in-place behavior of a typical fixed offshore platform. The SACS software is utilized to calculate the natural frequencies of the model and to obtain the response of platform joints according to in-place analysis then the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have an important effect on the results of the in-place analysis behavior. The influence of the soil-structure interaction on the response of the jacket foundation predicts is necessary to estimate the loads of the offshore platform well and real simulation of offshore foundation for the in-place analysis. The result of the study shows that the in-place response investigation is quite crucial for safe design and operation of offshore platform against the variation of environmental loads.

      • Structural performance assessment of fixed offshore platform based on in-place analysis

        Raheem, Shehata E. Abdel,Aal, Elsayed M. Abdel,AbdelShafy, Aly G.A.,Mansour, Mahmoud H.,Omar, Mohamed Techno-Press 2020 Coupled systems mechanics Vol.9 No.5

        In-place analysis for offshore platforms is essentially required to make proper design for new structures and true assessment for existing structures. The structural integrity of platform components under the maximum and minimum operating loads of environmental conditions is required for risk assessment and inspection plan development. In-place analyses have been executed to check that the structural member with all appurtenances robustness and capability to support the applied loads in either storm condition or operating condition. A nonlinear finite element analysis is adopted for the platform structure above the seabed and the pile-soil interaction to estimate the in-place behavior of a typical fixed offshore platform. The analysis includes interpretation of dynamic design parameters based on the available site-specific data, together with foundation design recommendations for in-place loading conditions. The SACS software is utilized to calculate the natural frequencies of the model and to obtain the response of platform joints according to in-place analysis then the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have important effects on the results of the in-place analysis behavior. The result shows that the in-place analysis is quite crucial for safe design and operation of offshore platform and assessment for existing offshore structures.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼