RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Computational Studies on Mesh Stiffness of Paralleled Helical Beveloid Gear Pair

        Ruihua Sun,Chaosheng Song,Caichao Zhu,Yawen Wang,Xingyu Yang 한국정밀공학회 2021 International Journal of Precision Engineering and Vol.22 No.1

        Considering the asymmetrical left and right tooth profiles including the transient curve at the tooth root region and the varying thickness along the axial direction due to the cone angle, we build the accurate profile curve model including the transient curve at the tooth root of helical beveloid gear with machining parameters to solve the problem of non-applicability of real digital model. According to the feature of gear shape varying along tooth width direction, we introduced the slicing method and derived its grouping formula. Finally, the efficient and accurate slicing-based mesh stiff ness calculation model of paralleled helical beveloid gears was proposed using potential energy theory. Then, mesh stiff ness was calculated using finite element contact model for comparison and verification. Finally, the impacts of macro geometry parameters including cone angle, normal pressure angle, helix angle, tooth width and addendum coefficient on single and total mesh stiff ness were analyzed. The calculated mesh stiff ness correlates well with the results from FEM with the maximum peak error is 4.8%. Results show that the tooth width shows an obvious incremental impact on average total mesh stiff ness. When the pressure angle, helix angle, cone angle and addendum coefficient increase, the average total mesh stiff ness increases first and then decreases. For the fluctuating value, it increases as the tooth width, helix angle and cone angle increase. However, the pressure angle and addendum coefficient show an opposite impact on the fluctuating value.

      • KCI등재

        Improvement of Fumigaclavine C Production in a Two-stage Culture of Aspergillus fumigatus with Molasses as a Cost-effective Ingredient

        Yi-Xiang Zhu,WEIWEI HUAN,Ling-yun Yao,Wan-Guo Yu,Ruihua Jiao,Yan-Hua Lu,Renxiang Tan 한국생물공학회 2015 Biotechnology and Bioprocess Engineering Vol.20 No.6

        Fumigaclavine C (FC), which is produced by Aspergillus fumigatus, is a conidiation-associated ergot alkaloid with significant medical benefits. However, its application is restricted by low yields from submerged cultures. In this study, the technical feasibility of using molasses as a cost-effective ingredient for FC production in a two-stage culture of A. fumigatus was evaluated. The results indicated that molasses supplementation significantly enhanced FC accumulation by promoting conidiation and up-regulating hydroxymethylglutaryl-CoA reductase activity. Via the optimization of the two-stage process in the presence of molasses, FC production in shake flasks reached 226.9 mg/L, which was approximately three times that in the original medium (75.9 mg/L). The use of molasses as a cost-effective ingredient for FC fermentation was also successfully reproduced in a lab-scale bioreactor system in which the maximum FC production reached 215.0 mg/L. The FC production obtained in this study is the highest ever reported. This increased efficiency will enable large-scale production of FC and extend the application of molasses as a low-cost substrate for producing other conidiation-related secondary metabolites.

      • KCI등재

        Fabrication of Novel CuO Films with Nanoparticles-Aggregated Sphere-Like Clusters on ITO and Their Nonenzymatic Glucose Sensing Applications

        Fang Sun,Hongwei Jiang,Ruihua Zhu,Dan Wang 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2017 NANO Vol.12 No.2

        In this work, novel nanoparticles-aggregated CuO sphere-like clusters were successfully synthesized on indium tin oxide (ITO) glass through a facile two-step procedure consisting of the fabrication of Cu2O films directly grown on ITO surface by electrodeposition, and subsequent calcinations of Cu2O films leading to the formation of CuO films. The morphology and structure of as-synthesized samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the size of nanoparticles constituting sphere-like clusters structure obtained at 200℃ is much smaller than that of obtained at other temperature, which can provide large surface area for catalytic reaction. The CuO/ITO electrode was applied to detect glucose by cyclic voltammetry (CV) and amperometric detection (i - t). It was found that the obtained CuO films modified ITO electrode exhibited a much higher electrocatalytic activity for the oxidation of glucose in an alkaline medium through heat treatment of 200℃. A favorable performance with a high sensitivity of 1841.5544 µA mM-1 cm-2 to glucose ranging from 1.0 x 10-6 M to 5.0 x 10-4 M, a low operating potential of 0.35V versus Ag/AgCl and a fast amperometric response (within 3 s) were achieved on such CuO/ITO electrode. It also showed outstanding long-term stability and good reproducibility. Notably, poisoning by chloride ions and interference from ascorbic acid, uric acid and acetaminophen were negligible. Therefore, the nanoparticles-aggregated CuO sphere-like clusters would be a promising candidate electrode material for the development of nonenzymatic glucose sensors.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼