RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Evolution and expression analysis of the β-glucosidase (GLU) encoding gene subfamily in maize

        Li Zhao,Ting Liu,Xia An,Riliang Gu 한국유전학회 2012 Genes & Genomics Vol.34 No.2

        The maize β-glucosidase (ZmGLU1) hydrolyzes cytokinin-conjugates for releasing active cytokinins and thus plays important roles in cytokinin regulatory processes. ZmGLU1 belongs to glycosyl hydrolases 1 (GH1) gene family with a large number of members, and the gene function of other homologs remains to be investigated. In this study, 47 Arabidopsis, 34rice, 31 brachypodium, 28 sorghum and 26 maize GH1 protein sequences were collected and subsequently used to construct a phylogenetic tree by Neighbor-Joining method. ZmGLU1 together with its 7 paralogs and 4 sorghum homologs were assigned into a distinct group (named GLU subfamily) with far evolutionary distance to other GH1 members. None of the Arabidopsis, rice and brachypodium gene falling into this group indicated a recent evolutionary emergence of GLU subfamily in some Poaceae plants after the divergence of Poaceae species. Phylogeny and comparative genome analysis revealed that GLU subfamily members of maize and sorghum evolved from a common ancestor, and expanded independently in each species by several duplications after maize-sorghum split. Ka/Ks analysis showed that purifying selection played important roles in maintenance of similar functions among the maize GLU paralogs. In addition, the similar protein properties and cytokinin-dependent gene expressions further suggested the similar functions of ZmGLUs in cytokinin activation. However, the organ-dependent expression of ZmGLUs exhibited diverse patterns, which might contribute to their diverse roles in cytokinin homeostasis. Taken together, this work put new insights into the evolution and expression of ZmGLU genes, and provided the foundation for future functional investigations.

      • KCI등재

        Overexpression of the maize ZmAMT1;1a gene enhances root ammonium uptake efficiency under low ammonium nutrition

        Yang Zhao,Zhi Liu,Fengying Duan,Xia An,Xiangguo Liu,Dongyun Hao,Riliang Gu,Zhangkui Wang,Fanjun Chen,Lixing Yuan 한국식물생명공학회 2018 Plant biotechnology reports Vol.12 No.1

        High-affinity ammonium uptake in maize roots is mainly mediated by AMT1-type ammonium transporters ZmAMT1;1a and ZmAMT1;3, but whether the increased expression of ZmAMTs genes is able to enhance ammonium uptake capacity and subsequently improves overall nitrogen use efficiency remains to be elucidated. In this work, ZmAMT1;1a-overexpression transgenic maize plants were generated with the elevated levels of transcripts and proteins, and phenotypically analyzed together with wild-type plants grown in nutrient solution under two regimes of ammonium supply. Under low ammonium nutrition (0.04 mM), in relative to wild-type plants, the maize transgenic lines showed an approximately 17% increases in the high-affinity ammonium uptake capacity of roots as revealed by 15N-labeled ammonium influx assay and further contributed to about 7% increases in the total nitrogen uptake at the whole plant level. By contrast, when ammonium was supplied in high amounts (1 mM), wild-type plants expressed higher levels of ZmAMT1;1a, but exhibited a lower ammonium uptake capacity in roots. Furthermore, the transgenic maize line accumulated more amounts of ZmAMT1;1a protein, but did not translate into an enhanced ammonium acquisition, suggesting a possible post-translational down-regulation of ZmAMT1;1a by high ammonium. This study proved the possibility to enhance ammonium acquisition by elevating ZmAMTs expression in maize roots and provided an effective transgenic approach on developing high nitrogen use efficient maize cultivars.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼