RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        POINT TRANSVERSALS TO TRANSLATES OF A TRAPEZOID

        Yuan, Li-Ping,Ren, Ren 한국전산응용수학회 2004 Journal of applied mathematics & informatics Vol.15 No.1

        An m-transversal to a family of convex sets in the plane is an m-point set which intersects every members of the family. One of Grubaum's conjectures says that a planar family of translates of a convex compact set has a 3-transversal provided that any two of its members intersect. Recently the conjecture has been proved affirmatively (see [4]). In the present paper we provide a different and straightforward proof for the conjecture for the family of translates of a closed trapezoid in the plane and give several concrete 3-transversals.

      • SCIESCOPUSKCI등재

        BMB Reports : Nutlin-3 downregulates p53 phosphorylation on serine and induces apoptosis in hepatocellular carcinoma cells

        ( Xin Li Shi ),( Jing Li Liu ),( Lai Feng Ren ),( Nan Mao ),( Fang Tan ),( Nana Ding ),( Jing Yang ),( Ming Yuan Li ) 생화학분자생물학회 2014 BMB Reports Vol.47 No.4

        Drug-resistance and imbalance of apoptotic regulation limit chemotherapy clinical application for the human hepatocellular carcinoma (HCC) treatment. The reactivation of p53 is an attractive therapeutic strategy in cancer with disrupted-p53 function. Nutlin-3, a MDM2 antagonist, has antitumor activity in various cancers. The post-translational modifications of p53 are a hot topic, but there are some controversy ideas about the function of phospho-Ser392-p53 protein in cancer cell lines in response to Nutlin-3. Therefore, we investigated the relationship between Nutlin-3 and phospho-Ser392-p53 protein expression levels in SMMC-7721 (wild-type TP53) and HuH-7 cells (mutant TP53). We demonstrated that Nutlin-3 induced apoptosis through down-regulation phospho-Ser392-p53 in two HCC cells. The result suggests that inhibition of p53 phosphorylation on Ser392 presents an alternative for HCC chemotherapy. [BMB Reports 2014; 47(4): 221-226]

      • Decreased Expression of FADS1 Predicts a Poor Prognosis in Patients with Esophageal Squamous Cell Carcinoma

        Du, Yong,Yan, Shu-Mei,Gu, Wan-Yi,He, Fan,Huang, Li-Yun,Li, Mei,Yuan, Yan,Chen, Ren-Hui,Zhong, Qian,Li, Man-Zhi,Li, Yong,Zeng, Mu-Sheng Asian Pacific Journal of Cancer Prevention 2015 Asian Pacific journal of cancer prevention Vol.16 No.12

        FADS1 (fatty acid desaturase 1) plays a crucial role in fatty acid metabolism, and it was recently reported to be involved in tumorigenesis. However, the role of FADS1 expression in esophageal squamous cell carcinoma (ESCC) remains unknown. In the current study, we investigated the expression and clinical pathologic and prognostic significance of FADS1 in ESCC. Immunohistochemical analyses revealed that 58.2% (146/251) of the ESCC tissues had low levels of FADS1 expression, whereas 41.8% (105/251) exhibited high levels of FADS1 expression. In positive cases, FADS1 expression was detected in the cytoplasm of cells. Correlation analyses demonstrated that FADS1 expression was significantly correlated with tumor location (p=0.025) but not with age, gender, histological grade, tumor status, nodal status or TNM staging. Furthermore, patients with tumors expressing high levels of FADS1had a longer disease-free survival time (p<0.001) and overall survival time (p <0.001). Univariate and multivariate analyses revealed that, along with nodal status, FADS1 expression was an independent and significant predictive factor (p<0.001). In conclusion, our study suggested that FADS1 might be a valuable biomarker and potential therapeutic target for ESCC.

      • SCISCIESCOPUS

        High-mass Star Formation through Filamentary Collapse and Clump-fed Accretion in G22

        Yuan, Jinghua,Li, Jin-Zeng,Wu, Yuefang,Ellingsen, Simon P.,Henkel, Christian,Wang, Ke,Liu, Tie,Liu, Hong-Li,Zavagno, Annie,Ren, Zhiyuan,Huang, Ya-Fang American Astronomical Society 2018 The Astrophysical journal Vol.852 No.1

        <P>How mass is accumulated from cloud-scale down to individual stars is a key open question in understanding highmass star formation. Here, we present the mass accumulation process in a hub-filament cloud G22 that is composed of four supercritical filaments. Velocity gradients detected along three filaments indicate that they are collapsing with a total mass infall rate of about 440M(circle dot) Myr(-1), suggesting the hub mass would be doubled in six free-fall times, adding up to similar to 2 Myr. A fraction of the masses in the central clumps C1 and C2 can be accounted for through large-scale filamentary collapse. Ubiquitous blue profiles in HCO+. (3-2) and (CO)-C-13. (3-2) spectra suggest a clump-scale collapse scenario in the most massive and densest clump C1. The estimated infall velocity and mass infall rate are 0.31 km s(-1) and 7.2 x. 10(-4)M(circle dot) yr(-1), respectively. In clump C1, a hot molecular core (SMA1) is revealed by the Submillimeter Array observations and an outflow-driving high-mass protostar is located at the center of SMA1. The mass of the protostar is estimated to be 11-15M(circle dot) and it is still growing with an accretion rate of 7 x. 10(-5)M(circle dot) yr(-1). The coexistent infall in filaments, clump C1, and the central hot core in G22 suggests that pre-assembled mass reservoirs (i.e., high-mass starless cores) may not be required to form high-mass stars. In the course of high-mass star formation, the central protostar, the core, and the clump can simultaneously grow in mass via core-fed/disk accretion, clump-fed accretion, and filamentary/cloud collapse.</P>

      • KCI등재

        Use of In Vivo-Induced Antigen Technology to Identify In Vivo-Expressed Genes of Campylobacter jejuni During Human Infection

        ( Yuan Qing Hu ),( Jin Lin Huang ),( Qiu Chun Li ),( Yu Wei Shang ),( Fang Zhe Ren ),( Yang Jiao ),( Zhi Cheng Liu ),( Zhi Ming Pan ),( Xin An Jiao ) 한국미생물 · 생명공학회 2014 Journal of microbiology and biotechnology Vol.24 No.3

        Campylobacter jejuni is a prevalent foodborne pathogen worldwide. Human infection by C. jejuni primarily arises from contaminated poultry meats. Genes expressed in vivo may play an important role in the pathogenicity of C. jejuni. We applied an immunoscreening method, in vivo-induced antigen technology (IVIAT), to identify in vivo-induced genes during human infection by C. jejuni. An inducible expression library of genomic proteins was constructed from sequenced C. jejuni NCTC 11168 and was then screened using adsorbed, pooled human sera obtained from clinical patients. We successfully identified 24 unique genes expressed in vivo. These genes were implicated in metabolism, molecular biosynthesis, genetic information processing, transport, and other processes. We selected six genes with different functions to compare their expression levels in vivo and in vitro using real-time RT-PCR. The results showed that the selected six genes were significantly upregulated in vivo but not in vitro. In short, these identified in vivo-induced genes may contribute to human infection of C. jejuni, some of which may be meaningful vaccine candidate antigens or diagnosis serologic markers for campylobacteriosis. IVIAT may present a significant and efficient method for understanding the pathogenicity mechanism of Campylobacter and for finding targets for its prevention and control.

      • KCI등재

        Research on Improved Schwarz Arc Model Considering Dynamic Arc Length

        Li Jingli,Yuan Hao,Xu Mingming,Tian Fenglan,Wang Zijian,Ren Junyue 대한전기학회 2023 Journal of Electrical Engineering & Technology Vol.18 No.3

        Establishing an accurate arc model is significant for simulating arc characteristics and research on arc high impedance fault detection. This paper firstly expounds arc physical properties, and theoretically analyzes the relationship between arc length and arcing voltage. Then, the magnetohydrodynamic model of AC arc is established by COMSOL Multiphysics, and the influence of arc length on electric field intensity, temperature, voltage and current of arc plasma is analyzed. Secondly, based on the influence of arc length on arc, an improved Schwarz arc model considering dynamic arc length is proposed, which not only considers arc time constant and dissipated power as functions of arc conductance, but also introduces arc length. The comparison error of the arcing voltage of the improved Schwarz model with actual measured data is 5%. In addition, the arcing voltage is compared with calculation results of theoretical formula and simulation results of magnetohydrodynamic model, which verifies the validity of improved arc model. Finally, the improved arc model is compared with Mayr model, Schwarz model and cybernetic model from the perspectives of arc voltage and current, and analysis shows that the improved arc model is reasonable in simulating arcing voltage, arc steady-state combustion voltage, and current zero-break characteristics.

      • KCI등재

        Endophytic Fungal strains Specifically Modified the Biochemical Status of Grape Cells

        Li-Hua Huang,Ming-Zhi Yang,Xiu-Jin Ao,An-Yun Ren,Ming-Quan Yuan,Han-Bo Zhang 한국식물학회 2018 Journal of Plant Biology Vol.61 No.4

        Previously, specific interactions in morphologywere observed between grape cells and endophytic fungalstrains during a dual culture experiment. However, thebiochemical impacts of these fungal endophytes on grapecells is also expected due to their potential application in grapequality management. After assessed multiple physiochemicaltraits to those grape cells which have co-cultured with differentendophytic fungal strains in this study, and found the presenceof fungal endophytes obviously triggered ROS stress responsesin grape cells, and the biochemical status in grape cells weredifferentially modified by different fungal strains. In thosetested endophytic fungal strains, RH37 (Epicoccum sp.),RH6 (Alternaria sp.), RH32 (Alternaria sp.) and RH34(Trichothecium sp.) conferred greater metabolic impacts ongrape cells. And soluble protein (SPr), total flavonoids (TF),total phenols (TPh) and malondialdehyde (MDA) on the otherhand, were sensitive biochemical parameters which can beinfluenced in greater ranges than other detected parameters. Most interestedly, fungal endophytes shaped metabolitespatterns in grape cells during the dual culture appeared fungalgenus/species/strain-specificity. The work confirmed thesignificance of fungal endophytes in grape metabolic regulationand elucidated the possibility to purposely manage grapequality using tool of fungal endophytes.

      • SCIESCOPUSKCI등재

        Thermal-fluid-structure coupling analysis on plate-type fuel assembly under irradiation. Part-II Mechanical deformation and thermal-hydraulic characteristics

        Li, Yuanming,Ren, Quan-yao,Yuan, Pan,Su, Guanghui,Yu, Hongxing,Zheng, Meiyin,Wang, Haoyu,Wu, Yingwei,Ding, Shurong Korean Nuclear Society 2021 Nuclear Engineering and Technology Vol.53 No.5

        The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect stress conditions, mechanical behaviors and thermal-hydraulic performance of the fuel assembly. This paper is the Part II work of a two-part study devoted to analyzing the complex unique mechanical deformation and thermal-hydraulic characteristics for the typical plate-type fuel assembly under irradiation effect, which is on the basis of developed and verified numerical thermal-fluid-structure coupling methodology under irradiation in Part I of this work. The mechanical deformation, thermal-hydraulic performance and Mises stress have been analyzed for the typical plate-type fuel assembly consisting of support plates under non-uniform irradiation. It was interesting to observe that: the plate-type fuel assembly including the fuel plates and support plates tended to bend towards the location with maximum fission rate; the hot spots in the fuel foil appeared at the location with maximum thickness increment; the maximum Mises stress of fuel foil was located at the adjacent location with the maximum plate thickness increment et al.

      • SCIESCOPUSKCI등재

        Thermal-fluid-structure coupling analysis for plate-type fuel assembly under irradiation. Part-I numerical methodology

        Li, Yuanming,Yuan, Pan,Ren, Quan-yao,Su, Guanghui,Yu, Hongxing,Wang, Haoyu,Zheng, Meiyin,Wu, Yingwei,Ding, Shurong Korean Nuclear Society 2021 Nuclear Engineering and Technology Vol.53 No.5

        The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect its stress conditions, mechanical behavior and thermal-hydraulic performance. A reliable numerical method is of great importance to reveal the complex evolution of mechanical deformation, flow redistribution and temperature field for the plate-type fuel assembly under non-uniform irradiation. This paper is the first part of a two-part study developing the numerical methodology for the thermal-fluid-structure coupling behaviors of plate-type fuel assembly under irradiation. In this paper, the thermal-fluid-structure coupling methodology has been developed for plate-type fuel assembly under non-uniform irradiation condition by exchanging thermal-hydraulic and mechanical deformation parameters between Finite Element Model (FEM) software and Computational Fluid Dynamic (CFD) software with Mesh-based parallel Code Coupling Interface (MpCCI), which has been validated with experimental results. Based on the established methodology, the effects of non-uniform irradiation and fluid were discussed, which demonstrated that the maximum mechanical deformation with irradiation was dozens of times larger than that without irradiation and the hydraulic load on fuel plates due to differential pressure played a dominant role in the mechanical deformation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼