RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Experimental study on the cable rigidness and static behaviors of AERORail structure

        Fangyuan Li,Peifeng Wu,Dongjie Liu 국제구조공학회 2012 Steel and Composite Structures, An International J Vol.12 No.5

        This paper presented a new aerial platform-AERORail for rail transport and its structure evolution based on the elastic stiffness of cable; through the analysis on the cable properties when the cable supported a small service load with high-tensile force, summarized the theoretical basis of the AERORail structure and the corresponding simplified analysis model. There were 60 groups of experiments for a single naked cable model under different tensile forces and different services loads, and 48 groups of experiments for the cable with rail combined structure model. The experimental results of deflection characteristics were compared with the theoretical values for these two types of structures under the same conditions. It proved that the results almost met the classical cable theory. The reason is that a small deflection was required when this structure was applied. After the tension increments tests with moving load, it is verified that the relationships between the structure stiffness and tension force and service load are simple. Before further research and applications are made, these results are necessary for the determination of the reasonable and economic tensile force, allowable service load for the special span length for this new platform.

      • KCI등재

        Analysis and monitoring on jacking construction of continuous box girder bridge

        Fangyuan Li,Peifeng Wu,Xinfei Yan 사단법인 한국계산역학회 2015 Computers and Concrete, An International Journal Vol.16 No.1

        It is hard to guarantee the strict synchronization of all the jacking-up points in the integral jacking of a large-span continuous box girder bridge. This paper took the Hengliaojing Bridge as background, which need jacking up as an object with 295m length and more than 10,000tons weight, adopted 3D software to calculate the unsynchronized jacking-up working conditions, and studied the relationships between the unsynchronized vertical difference and the girder’s deformation behaviour. The aim is to verify the maximum value of the unsynchronized vertical difference, and guide the construction and ensure safety. The monitoring system with its contents is introduced corresponding to the analysis. The results of the deck relative elevations prove that it is difficult to avoid the deck torsional deformation for jacking different; especially the side span shows more deformations for its smaller stiffness. The maximum difference is smaller than the limited value with acceptable stresses in the sections. The jacking heights of the pier in each construction step are controlled regularly according to the design. The shifting of the whole bridge in longitudinal direction is smaller than in transverse direction. The several beginning steps are the key to adjust their support reactions. This study is one parts of the fundamental research for the code “Technical specification for bridge jacking-up and reposition of China”. The whole synchronous jacking project of the main bridge set a world record by the World Record Association for the whole bridge jacking project with the longest span of the world.

      • An experimental study of the mechanical performance of different types of girdling beams used to elevate bridges

        Fangyuan Li,Wenhao Li,Peifeng Wu 국제구조공학회 2023 Structural Engineering and Mechanics, An Int'l Jou Vol.85 No.4

        Girdling underpinning joints are key areas of concern for the pier-cutting bridge-lifting process. In this study, five specimens of an underpinning joint were prepared by varying the cross-sectional shape of the respective column, the process used to treat the beam-column interface (BCI), and the casting process. These specimens were subsequently analyzed through static failure tests. The BCI was found to be the weakest area of the joint, and the specimens containing a BCI underwent punching shear failure. The top of the girdling beam (GB) was subjected to a circumferential tensile force during slippage failure. Compared to the specimens with a smooth BCI, the specimens subjected to chiseling exhibited more pronounced circumferential compression at the BCI, which in turn considerably increased the shear capacity of the BCI and the ductility of the structure. The GB for the specimens containing a column with a circular cross-section exhibited better shear mechanical properties than the GB of other specimens. The BCI in specimens containing a column with a circular cross-section was more ductile during failure than that in specimens containing a column with a square cross-section.

      • KCI등재

        Study on Strength Characteristics and Microstructure of Completely Decomposed Migmatitic Granite

        Song Yan,Hua Tang,Zhenjun Wu,Sitao Li,Peifeng Li 대한토목학회 2023 KSCE Journal of Civil Engineering Vol.27 No.1

        Migmatitic granite is the product of mixed lithification and granitization, and completely decomposed migmatitic granite (CDMG) was formed after weathering. The engineering properties of CDMG are complex, and its engineering properties are complex after weathering, and water content has a great influence on the properties of (CDMG). Due to its loose structure and strong heterogeneity, it is difficult to determine its strength characteristics by conventional test methods. In the paper triaxial and micro-CT test were conducted to study the relationship between shear strength and microstructure of CDMG under different water content. The results show that with the increase of water content from 6% to 14%, the internal friction angle decreases from 31.8° to 27.3°, and the cohesion first increases from 76.5 kPa to 94.3 kPa and then decreases to 77.7 kPa. This is because the sliding friction coefficient between coarse particles decreases with the increase of water film thickness on the surface of particles, and the occlusal effect between coarse particles weakens and the displacement adjustment is easier during the triaxial loading process. Under different water content, the shear strength of CDMG is not sensitive to particle structure parameters including particle size, particle morphology and particle arrangement. The particle analysis results of post-test sample show that the crushing proportion of coarse particles increases with the increase of the internal friction angle. The clay minerals produce differential expansion potential with the increase of water content, and the porosity and pore connectivity first decrease and then increase. Cohesion has a linear relationship with porosity and pore connectivity. With the increase of porosity from 23.95% to 26.95%, cohesion decreases linearly by 17%. These results indicate that the internal friction angle of CDMG can be inferred by water content, and the cohesion can be inferred by porosity and pore connectivity obtained by microstructure analysis.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼