RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Chemical Structural Features of Humic-like Substances (HULIS) in Urban Atmospheric Aerosols Collected from Central Tokyo with Special Reference to Nuclear Magnetic Resonance Spectra

        Naoya Katsumi,Shuhei Miyake,Hiroshi Okochi 한국대기환경학회 2018 Asian Journal of Atmospheric Environment (AJAE) Vol.12 No.2

        We measured 1H and 13C nuclear magnetic resonance (NMR) spectra of Humic-like substances (HULIS) in urban atmospheric aerosols isolated by diethylaminoethyl (DEAE) and hydrophilic-lipophilic balance (HLB) resin to characterize their chemical structure. HULIS isolated by DEAE resin were characterized by relatively high contents of aromatic protons and relatively low contents of aliphatic protons in comparison with HULIS isolated by HLB resin, while the contents of protons bound to oxygenated aliphatic carbon atoms were similar. These results were consistent with the results of the 13C NMR analysis and indicate that hydrophobic components were more selectively adsorbed onto HLB, while DEAE resins selectively retained aromatic carboxylic acids. Furthermore, we demonstrated that the chemical structural features of HULIS were significantly different between spring and summer samples and that these disparities were reflective of their different sources. The estimated concentrations of HULIS in spring were found to be regulated by vehicle emissions and pollen dispersion, while the behavior of HULIS in summer was similar to photochemical oxidant and nitrogen dioxide concentrations. The proportion of aliphatic protons for summer samples was higher than that for spring samples, while the proportion of aromatic protons for summer samples was lower than that for spring samples. These seasonal changes of the chemical structure may also involve in their functional expression in the atmosphere.

      • SCOPUSKCI등재

        Changes in Concentration Levels of Polycyclic Aromatic Compounds Associated with Airborne Particulate Matter in Downtown Tokyo after Introducing Government Diesel Vehicle Controls

        Kojima, Yuki,Inazu, Koji,Hisamatsu, Yoshiharu,Okochi, Hiroshi,Baba, Toshihide,Nagoya, Toshio Korean Society for Atmospheric Environment 2010 Asian Journal of Atmospheric Environment (AJAE) Vol.4 No.1

        The effectiveness of the government regulation on tail-pipe emission for diesel vehicles issued in 2003 in Tokyo was evaluated in this study. Variations in annual average concentrations of polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs associated with airborne particulate matter were investigated in connection with the variation in airborne elemental carbon (EC) concentration in downtown Tokyo, Japan in 2006-2007 and in 1997-1998. The annual average concentrations of EC, seven different PAHs, and 1-nitropyrene were found to have decreased significantly from 1997-1998 to 2006-2007. The most prominent decrease in atmospheric concentration was observed for 1-nitropyrene, which is a representative nitro-PAH originating from diesel vehicles. This indicated that the government control has worked to considerably reduce both atmospheric mutagens and airborne particulate matter. In contrast, the concentrations of two nitro-PAHs, 2-nitrofluoranthene and 2-nitropyrene, remained the same. These nitro-PAHs are known to be formed by atmospheric nitration of their parent PAHs, and this result suggested factors other than the concentration of parent PAHs and $NO_2$ affects the degree of atmospheric formation of nitro-PAHs.

      • KCI등재

        Chemokine expression in human 3-dimensional cultured epidermis exposed to PM2.5 collected by cyclonic separation

        Kono Maori,Okuda Tomoaki,Ishihara Nami,Hagino Hiroyuki,Tani Yuto,Okochi Hiroshi,Tokoro Chiharu,Takaishi Masayuki,Ikeda Hidefumi,Ishihara Yasuhiro 한국독성학회 2023 Toxicological Research Vol.39 No.1

        Fine particulate matter (PM2.5) exposure has a risk of inducing several health problems, especially in the respiratory tract. The skin is the largest organ of the human body and is therefore the primary target of PM2.5. In this study, we examined the effects of PM2.5 on the skin using a human 3-dimensional cultured epidermis model. PM2.5 was collected by cyclonic separation in Yokohama, Japan. Global analysis of 34 proteins released from the epidermis revealed that the chemokines, chemokine C-X-C motif ligand 1 (CXCL1) and interleukin 8 (IL-8), were significantly increased in response to PM2.5 exposure. These chemokines stimulated neutrophil chemotaxis in a C-X-C motif chemokine receptor 2-dependent manner. The oxidative stress and signal transducer and activator of transcription 3 pathways may be involved in the increased expression of CXCL1 and IL-8 in the human epidermis model. Interestingly, in the HaCaT human keratinocyte cell line, PM2.5 did not affect chemokine expression but did induce IL-6 expression, suggesting a different effect of PM2.5 between the epidermis model and HaCaT cells. Overall, PM2.5 could induce the epidermis to release chemokines, followed by neutrophil activation, which might cause an unregulated inflammatory reaction in the skin.

      • KCI등재

        Source apportionment of ambient PM2.5 in Ho Chi Minh City, Vietnam

        Ngoc Tran,Yusuke Fujii,Md Firoz Khan,To Thi Hien,Tran Hoang Minh,Hiroshi Okochi,Norimichi Takenaka 한국대기환경학회 2024 Asian Journal of Atmospheric Environment (AJAE) Vol.18 No.1

        The emission sources of fine particulate matter ( PM2.5) have not yet been fully identified in Ho Chi Minh City (HCMC), Vietnam, presenting difficulties to authorities in controlling air pollution efficiently. To address this issue, this study explores the source apportionment of PM2.5 by the positive matrix factorization (PMF) model and identifies potential regional sources through the weighted concentration-weighted trajectory (WCWT) model based on the field observation data of PM2.5 in HCMC. 24-h PM2.5 samples were collected in central HCMC for a year (September 2019–August 2020). Herein, inductively coupled plasma mass spectroscopy was used to analyze trace elements, in addition to identifying PM2.5 mass and other chemical species, such as water-soluble ions and carbonaceous species, reported in our former study. The PMF results showed that PM2.5 in HCMC was dominated by anthropogenic-rich sources comprising biomass burning, coal combustion, transportation, and crustal origins (36.4% of PM2.5 mass), followed by secondary ammonium sulfate (18.4%), sea salt (13.7%), road dust (9.6%), and coal and crude oil combustion (9.4%). WCWT results suggested that the geological sources of PM2.5 were mainly from local areas and scattered to the northeast/southwest of HCMC. In addition, the long-range transport of PM2.5 from surrounding countries was revealed during the assembly restriction and lockdown period in 2020.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼