RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Reliable monitoring of embankment dams with optimal selection of geotechnical instruments

        Masoumi, Isa,Ahangari, Kaveh,Noorzad, Ali Techno-Press 2017 Structural monitoring and maintenance Vol.4 No.1

        Monitoring is the most important part of the construction and operation of the embankment dams. Applied instruments in these dams should be determined based on dam requirements and specifications. Instruments selection considered as one of the most important steps of monitoring plan. Competent instruments selection for dams is very important, as inappropriate selection causes irreparable loss in critical condition. Lack of a systematic method for determining instruments has been considered as a problem for creating an efficient selection. Nowadays, decision making methods have been used widely in different sciences for optimal determination and selection. In this study, the Multi-Attribute Decision Making is applied by considering 9 criteria and categorisation of 8 groups of geotechnical instruments. Therefore, the Analytic Hierarchy Process and Multi-Criteria Optimisation and Compromise Solution methods are employed in order to determine the attributes' importance weights and to prioritise of instruments for embankment dams, respectively. This framework was applied for a rock fill with clay core dam. The results indicated that group decision making optimizes the selection and prioritisation of monitoring instruments for embankment dams, and selected instruments are reliable based on the dam specifications.

      • KCI등재

        Dynamic analysis of 3-D structures with adaptivity in RBF of dual reciprocity BEM

        S.H. Razaee,A. Noorzad 국제구조공학회 2008 Structural Engineering and Mechanics, An Int'l Jou Vol.29 No.2

        A new adaptive dual reciprocity boundary element method for dynamic analysis of 3-D structures is presented in this paper .It is based on finding the best approximation function of a radial basis function (RBF) group which minimize the error of displacement field expansion. Also, the effects of some parameters such as the existence of internal points, number of RBF functions and position of collocation nodes in discontinuous elements are investigated in this adaptive procedure. Three numerical examples show improvement in dynamic response of structures with adaptive RBF in dual reciprocity with respect to ordinary BEM.

      • SCIESCOPUS

        Dynamic analysis of 3-D structures with adaptivity in RBF of dual reciprocity BEM

        Razaee, S.H.,Noorzad, A. Techno-Press 2008 Structural Engineering and Mechanics, An Int'l Jou Vol.29 No.2

        A new adaptive dual reciprocity boundary element method for dynamic analysis of 3-D structures is presented in this paper. It is based on finding the best approximation function of a radial basis function (RBF) group $f=r^n+c$ which minimize the error of displacement field expansion. Also, the effects of some parameters such as the existence of internal points, number of RBF functions and position of collocation nodes in discontinuous elements are investigated in this adaptive procedure. Three numerical examples show improvement in dynamic response of structures with adaptive RBF in dual reciprocity with respect to ordinary BEM.

      • KCI등재

        Computer-aided SPT-based reliability model for probability of liquefaction using hybrid PSO and GA

        Maral Goharzay,Ali Noorzad,Ahmadreza Mahboubi Ardakani,Mostafa Jalal 한국CDE학회 2020 Journal of computational design and engineering Vol.7 No.1

        In this paper, an approach for soil liquefaction evaluation using probabilistic method based on the world-wide SPT databases has been presented. In this respect, the parameters’ uncertainties for liquefaction probability have been taken into account. A calibrated mapping function is developed using Bayes’ theorem in order to capture the failure probabilities in the absence of the knowledge of parameter uncertainty. The probability models provide a simple, but also efficient decision-making tool in engineering design to quantitatively assess the liquefaction triggering thresholds. Within an extended framework of the first-order reliability method considering uncertainties, the reliability indices are determined through a well-performed meta-heuristic optimization algorithm called hybrid particle swarm optimization and genetic algorithm to find the most accurate liquefaction probabilities. Finally, the effects of the level of parameter uncertainty on liquefaction probability, as well as the quantification of the limit state model uncertainty in order to incorporate the correct model uncertainty, are investigated in the context of probabilistic reliability analysis. The results gained from the presented probabilistic model and the available models in the literature show the fact that the developed approach can be a robust tool for engineering design and analysis of liquefaction as a natural disaster.

      • SCIESCOPUS

        Optimal monitoring instruments selection using innovative decision support system framework

        Masoumi, Isa,Ahangari, Kaveh,Noorzad, Ali Techno-Press 2018 Smart Structures and Systems, An International Jou Vol.21 No.1

        Structural monitoring is the most important part of the construction and operation of the embankment dams. Appropriate instruments selection for dams is vital, as inappropriate selection causes irreparable loss in critical condition. Due to the lack of a systematic approach to determine adequate instruments, a framework based on three comparable Multi-Attribute Decision Making (MADM) methods, which are VIKOR, technique of order preference by similarity to ideal solution (TOPSIS) and Preference ranking organization method for enrichment evaluation (PROMETHEE), has been developed. MADM techniques have been widely used for optimizing priorities and determination of the most suitable alternatives. However, the results of the different methods of MADM have indicated inconsistency in ranking alternatives due to closeness of judgements from decision makers. In this study, 9 criteria and 42 geotechnical instruments have been applied. A new method has been developed to determine the decision makers' importance weights and an aggregation method has been introduced to optimally select the most suitable instruments. Consequently, the outcomes of the aggregation ranking correlate about 94% with TOPSIS and VIKOR, and 83% with PROMETHEE methods' results providing remarkably appropriate prioritisation of instruments for embankment dams.

      • KCI등재

        Seismic fragility analysis of a cemented Sand-gravel dam considering two failure modes

        Khadije Mahmoodi,Ali Noorzad,Ahmad Mahboubi 사단법인 한국계산역학회 2020 Computers and Concrete, An International Journal Vol.26 No.6

        Dams are vital infrastructures that are expected to maintain their stability during seismic excitations. Accordingly, cemented material dams are an emerging type, which are being increasingly used around the world owing to benefiting from advantages of both earth-fill and concrete gravity dams, which should be designed safely when subjected to strong ground motion. In the present paper, the seismic performance of a cemented sand and gravel (CSG) dam is assessed using incremental dynamic analysis (IDA) method by accounting for two failure modes of tension cracking and base joint sliding considering the dam-reservoir-foundation interactions. To take the seismic uncertainties into account, the dam is analyzed under a suite of ground motion records and then, the effect of friction angle for base sliding as well as deformability of the foundation are investigated on the response of dam. To carry out the analyses, the Cindere dam in Turkey is selected as a case study, and various limit states corresponding to seismic performance levels of the dam are determined aiming to estimate the seismic fragilities. Based on the results, sliding of the Cindere dam could be serious under the maximum credible earthquake (MCE). Besides, dam faces are mostly to be cracked under such level of intensity. Moreover, the results indicate that as friction angle increases, probability of sliding between dam and foundation is reduced whereas, increases tensile cracking. Lastly, it is observed that foundation stiffening increases the probability of dam sliding but, reduces the tensile damage in the dam body.

      • SCIESCOPUS

        Analysis and design of inclined piles used to prevent downhill creep of unsaturated clay formations

        Poorooshasb, H.B.,Miura, N.,Noorzad, Ali Techno-Press 1998 Structural Engineering and Mechanics, An Int'l Jou Vol.6 No.3

        This paper present an analysis which may be used to obtain a rational design of a system of inclined piles used in preventing downhill creep of unsaturated clay formations. It uses two simple and relatively easy to measure parameters (an estimate of the maximum downhill creep together with a knowledge of the depth of the so called active zone) to calculate the required section size and the optimal spacing (pitch) of the piles for a desired efficiency of the system as a whole. Design charts are provided to facilitate the process.

      • KCI등재

        Optimal monitoring instruments selection using innovative decision support system framework

        Isa Masoumi,Kaveh Ahangari,Ali Noorzad 국제구조공학회 2018 Smart Structures and Systems, An International Jou Vol.21 No.1

        Structural monitoring is the most important part of the construction and operation of the embankment dams. Appropriate instruments selection for dams is vital, as inappropriate selection causes irreparable loss in critical condition. Due to the lack of a systematic approach to determine adequate instruments, a framework based on three comparable Multi-Attribute Decision Making (MADM) methods, which are VIKOR, technique of order preference by similarity to ideal solution (TOPSIS) and Preference ranking organization method for enrichment evaluation (PROMETHEE), has been developed. MADM techniques have been widely used for optimizing priorities and determination of the most suitable alternatives. However, the results of the different methods of MADM have indicated inconsistency in ranking alternatives due to closeness of judgements from decision makers. In this study, 9 criteria and 42 geotechnical instruments have been applied. A new method has been developed to determine the decision makers\' importance weights and an aggregation method has been introduced to optimally select the most suitable instruments. Consequently, the outcomes of the aggregation ranking correlate about 94% with TOPSIS and VIKOR, and 83% with PROMETHEE methods' results providing remarkably appropriate prioritisation of instruments for embankment dams.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼