RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Nutrient dynamics study of overlying water affected by peroxide-treated sediment

        Niamul Haque,권성현 한국생태학회 2017 Journal of Ecology and Environment Vol.41 No.9

        Background: Loading of excess nutrient via bioremediation of polluted sediment to overlying water could trigger anoxia and eutrophication in coastal area. The aim of this research was to understand the changes of overlying water features such as dissolved oxygen (DO); pH; oxidation reduction potential (ORP); chlorophyll-a (Chl-a); and nitrogen nutrients ammonia (N-NH4 +), nitrate (N-NO3 −), and nitrite (N-NO2 −) when the sediment was not treated (control) and treated by calcium peroxide for 5 weeks. Methods: The water samples were analyzed for measuring physical and chemical properties along with the sediment analyzed by polymerase chain reaction (PCR) including denaturing gradient gel electrophoresis (DGGE) for identifying the phylogenetic affiliation of microbial communities. Results: Results showed that due to the addition of calcium peroxide in sediment, the overlying water exposed the rise of dissolve oxygen, pH, and ORP than control. Among the nitrogen nutrients, ammonia inhibition was higher in calcium peroxide treatment than control but in case of nitrate inhibition, it was reversed than control. Chlorophyll-a was declined in treatment column water by 30% where it was 20% in control column water. Actibacter and Salegentibacter group were detectable in the calcium-peroxide-treated sediment; in contrary, no detectable community ware found in control sediment. Both phylogenetic groups are closely related to marine microflora. Conclusions: This study emphasizes the importance of calcium peroxide as an oxygen release material. Interaction with peroxide proved to be enhancing the formation of microbial community that are beneficial for biodegradation and spontaneity of nutrient attenuation into overlying water.

      • KCI등재

        Performances of Metallic (sole, composite) and Non-Metallic Anodes to Harness Power in Sediment Microbial Fuel Cells

        Niamul Haque,Daechul Cho,Sunghyun Kwon 대한환경공학회 2014 Environmental Engineering Research Vol.19 No.4

        One chambered sediment microbial fuel cell (SMFC) was equipped with Fe, brass (Cu/Zn), Fe/Zn, Cu, Cu/carbon cloth and graphite felt anode. Graphite felt was used as common cathode. The SMFC was membrane-less and mediator-less as well. Order of anodic performance on the basis of power density was Fe/Zn (6.90 Wm-2) > Fe (6.03 Wm-2) > Cu/carbon cloth (2.13 Wm-2) > Cu (1.13 Wm-2) > brass (Cu/Zn=0.24 Wm-2) > graphite felt (0.10 Wm-2). Fe/Zn composite anode have twisted 6.73% more power than Fe alone, Cu/carbon cloth boosted power production by 65%, and brass (Cu/Zn) produced 65% less power than Cu alone. Graphite felt have shown the lowest electricity generation because of its poor galvanic potential. The estuarine sediment served as supplier of oxidants or electron producing microbial flora, which evoked electrons via a complicated direct microbial electron transfer mechanism or making biofilm, respectively. Oxidation reduction was kept to be stationary over time except at the very initial period (mostly for sediment positioning) at anodes. Based on these findings, cost effective and efficient anodic material can be suggested for better SMFC configurations and stimulate towards practical value and application.

      • KCI등재

        Proactive Approach for Biofouling Control

        Niamul Haque,Daechul Cho,Jeong Mee Lee,Dong Su Lee,Sunghyun Kwon 대한환경공학회 2014 Environmental Engineering Research Vol.19 No.4

        Macro fouling due to blue mussels (Mytilus edulis) has affected negatively on the operation efficiency and eventual system failure of offshore structures and coastal power stations. A certain range of chlorine (0.05, 0.1, 0.3, 0.5, 0.7 and 1.0 mg/L) was applied on the mussel larvae to identify the survival rate with respect to various exposure times under laboratory condition. The ciliary movement of the larvae was used to check their survival. The 1.0 mg/L of chlorine shows to 97% of larvae mortality whereas 0.7 mg/L of chlorine shows only 16% of larvae mortality. Minimum exposure times for 100% larvae mortality ranged from 300 to 20 min for increasing concentrations of chlorine (0.05~1.0 mg/L). It was found that 1 mg/L of chlorine was 4 times more efficient than 0.7 mg/L of that, and 15 times more than 0.05 mg/L of chlorine dose. Data collected and analyzed here will help plant operators to optimize chlorine dosage and its scheduling.

      • SCISCIESCOPUS

        Dose- and age-specific antioxidant responses of the mysid crustacean <i>Neomysis awatschensis</i> to metal exposure

        Haque, Md. Niamul,Lee, Do-Hee,Kim, Bo-Mi,Nam, Sang-Eun,Rhee, Jae-Sung Elsevier 2018 Aquatic toxicology Vol.201 No.-

        <P><B>Abstract</B></P> <P>Waterborne metals can adversely affect an organism’s innate defenses through oxidative stress. In the present study, the marine mysid <I>Neomysis awatchensis</I> was exposed to sublethal concentrations (1/10 and 1/5 of the median LC50s) of As, Cd, Cu, Pb, and Zn for 48 or 96 h at the juvenile and adult developmental stages, and the dose- and age-specific antioxidant defense system responses were characterized. Metal accumulation and modulation of four key antioxidant biomarkers, malondialdehyde (MDA), glutathione (GSH), superoxide dismutase, and catalase, were measured in juvenile and adult mysids. Based on LC50, level of metal toxicity was dependent on metal concentration, developmental stage, and the exposure duration. Intracellular MDA content was increased in the As-, Cu-, Pb-, and Zn-exposed juvenile mysids after exposure for 48 and/or 96 h, while increases in MDA content were observed in adult mysids following Cu and Zn exposure. Interestingly, GSH content was differentially modulated, where intracellular GSH levels decreased in juvenile mysids following Cd, Cu, Pb, and Zn exposure, but significantly increased in metal-exposed adult mysids, except for Pb exposure. The catalase and superoxide dismutase activities displayed similar stage-specific increases or decreases as also observed for the different GSH levels, suggesting that the susceptibility to and defense against metal-induced oxidative stress differed based on stage. Modulations in MDA and GSH content and enzymatic activity of the antioxidant defense system indicate that mysid antioxidant defense system factors are intimately connected during control of oxidative imbalances with different capacities at different developmental stages.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Evidence on the age-specific bioconcentration of five metals in the marine mysid was obtained. </LI> <LI> Age-specific relationship between metal dynamics and ecotoxicity between ages was observed. </LI> <LI> Oxidative stress was induced by metals and caused distinctive age-specific antioxidant response. </LI> </UL> </P>

      • KCI등재후보

        Exposure to Sublethal Concentrations of Copper Pyrithione Reduces Cholinergic Activity and Induces Oxidative Stress in a Marine Polychaete

        Haque Md. Niamul,이재성 (사)한국해양생명과학회 2022 한국해양생명과학회지 Vol.7 No.2

        Despite concerns about the significant toxicity of copper pyrithione (CuPT) at environmental concentrations, effects of CuPT on benthic organisms have received little attention. Here, we analyzed the detrimental effects of CuPT at sublethal concentrations (1/50, 1/20, and 1/10 of the 96 h-LC50 value) for 14 days in the marine polychaete Perinereis aibuhitensis. Reduced burrowing activity and significantly decreased the acetylcholinesterase activity in response to relatively high concentrations of CuPT were identified as CuPT-triggered cholinergic inhibition. The lipid peroxidation marker, malondialdehyde levels were dose- dependently increased, whereas intracellular glutathione was depleted by relatively high concentrations. In the CuPT-treated polychaete, significant fluctuations in the enzymatic activities of the antioxidant defense system (catalase, superoxide dismutase, glutathione reductase, and glutathione peroxidase) were observed with significantly modulated glutathione S-transferase activity. These results indicate that even sublethal levels of CuPT would have detrimental effects on the health status of the marine polychaete.

      • KCI등재후보

        Acute and Chronic Effects of Nanoplastics on the Water Flea Moina macrocopa

        Haque Md. Niamul,Kim Jaehee,Rhee Jae-Sung (사)한국해양생명과학회 2023 한국해양생명과학회지 Vol.8 No.1

        Here, upon acute (96 h) and chronic (14 days) exposure, ingestion of polystyrene NPs (100 nm) and physiological, biochemical, and cholinergic modulations were analyzed in the water flea Moina macrocopa exposed to different concentrations (0.001, 0.01, 0.1, 1, 5, 10, 50, 100, and 500 μg l-1). Exposed NPs were observed in the internal organs (e.g., digestive tract and foregut) of the water flea. Chronic exposure to the relatively high concentrations resulted in significant decreases in survival, body length, and the total number of molts, whereas reproduction parameter was not affected. Significant increase in oxidative stress biomarker (malondialdehyde) and decrease in the intracellular content of endogenous antioxidant (glutathione) and enzymatic activity of antioxidant enzymes (glutathione peroxidase, glutathione reductase, catalase, superoxide dismutase, and glutathione S-transferase) were detected in response to relatively high concentrations of NPs. Transcriptional expression of the hsp70 gene was increased in response to relatively high concentrations of NPs, whereas acetylcholinesterase activity was lowered by the same concentrations of NPs. Taken together, NPs exposure would be a significant modulator on physiological and biochemical metabolism of water flea.

      • KCI등재

        Sole and Combined Usage of Ultra-sonication and Hydrogen Peroxide as Mitigation Techniques of Bio-fouling

        ( Niamul Haque ),( Sung-hyun Kwon ) 한국환경과학회 2016 한국환경과학회지 Vol.25 No.10

        Mussels are stubborn organism attached to solid substrate by byssus threads and caused operational problems in utility of power generating stations. Sole and combined usage of ultrasonic (28 kHz- and 42 kHz- frequencies) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) has studied for control of blue mussel larvae and adult stage in seawater condition. A theoretical wo rking model using disinfection (Chick and Watson type) approaches is presented based on helpful results of experiments. This study also demonstrate that the combined treatment (ultra-sonication with H<sub>2</sub>O<sub>2</sub>) is overall highly efficient than individual treatment would, but on the basis of exposure time, the ultra-sonication was the most efficient among them. Therefore the development of sole and combined technique might be effective practical mitigation strategy against mussel attachment for water handling facilities.

      • SCOPUSKCI등재

        Nutrient dynamics study of overlying water affected by peroxide-treated sediment

        Haque, Niamul,Kwon, Sung-Hyun The Ecological Society of Korea 2017 Journal of Ecology and Environment Vol.41 No.9

        Background: Loading of excess nutrient via bioremediation of polluted sediment to overlying water could trigger anoxia and eutrophication in coastal area. The aim of this research was to understand the changes of overlying water features such as dissolved oxygen (DO); pH; oxidation reduction potential (ORP); $chlorophyll-{\alpha}$ ($Chl-{\alpha}$); and nitrogen nutrients ammonia ($N-NH_4{^+}$), nitrate ($N-NO_3{^-}$), and nitrite ($N-NO_2^-$) when the sediment was not treated (control) and treated by calcium peroxide for 5 weeks. Methods: The water samples were analyzed for measuring physical and chemical properties along with the sediment analyzed by polymerase chain reaction (PCR) including denaturing gradient gel electrophoresis (DGGE) for identifying the phylogenetic affiliation of microbial communities. Results: Results showed that due to the addition of calcium peroxide in sediment, the overlying water exposed the rise of dissolve oxygen, pH, and ORP than control. Among the nitrogen nutrients, ammonia inhibition was higher in calcium peroxide treatment than control but in case of nitrate inhibition, it was reversed than control. $Chlorophyll-{\alpha}$ was declined in treatment column water by 30% where it was 20% in control column water. Actibacter and Salegentibacter group were detectable in the calcium-peroxide-treated sediment; in contrary, no detectable community ware found in control sediment. Both phylogenetic groups are closely related to marine microflora. Conclusions: This study emphasizes the importance of calcium peroxide as an oxygen release material. Interaction with peroxide proved to be enhancing the formation of microbial community that are beneficial for biodegradation and spontaneity of nutrient attenuation into overlying water.

      • KCI등재

        ORIGINAL ARTICLE : Characteristics of Electricity Production by Metallic and Non-metallic Anodes Immersed in Mud Sediment Using Sediment Microbial Fuel Cell

        ( Niamul Haque ),( Dae Chul Cho ),( Sung Hyun Kwon ) 한국환경과학회 2014 한국환경과학회지 Vol.23 No.10

        Sediment microbial fuel cell (SMFC), equipped with Zn, Al, Cu, Fe or graphite felt (GF) anode and marine sediment, was performed. Graphite felt was used as a common cathode. SMFC was single chambered and did not use any redox mediator. The aim of this work was to find efficient anodic material. Oxidation reduction potential (ORP), cell voltage, current density, power density, pH and chemical oxygen demand (COD) were measured for SMFC’s performance.. The order of maximum power density was 913 mWm-2 for Zn, 646 mWm-2 for Fe, 387.8 mWm-2 for Cu, 266 mWm-2 for Al, and 127 mWm-2 for graphite felt (GF). The current density over voltage was found to be strongly correlated with metal electrodes, but the graphite felt electrode, in which relatively weaker electricity was observed because of its bio-oriented mechanism. Metal corrosion reactions and/or a complicated microbial electron transfer mechanism acting around the anodic compartment may facilitate to generate electricity. We presume that more sophisticated selection of anodic material can lead to better performance in SMFC.

      • KCI등재

        Formation and stability study of silver nano-particles in aqueous and organic medium

        Niamul Haque,권성현,조대철 한국화학공학회 2017 Korean Journal of Chemical Engineering Vol.34 No.7

        Colloidal silver nanoparticles were obtained by chemical reduction of silver nitrate in water and organic solvent with sodium borohydride. The effects of oxidant, reducing agent, stabilizer, and temperature, during the growth of silver nanoparticles were discussed. As the reaction proceeded in aqueous medium a characteristic plasmon absorption peak between 390-420 nm appeared as presence of silver nanoparticles. The peak intensities and shifting (blue or red) were altered in accordance with some applied factors. The formed silver nanoparticles were found to be with particles size range from 3 to 20 nm. The change rates of Ag+ ions to Ag0 in aqueous and organic solvent are strongly temperature dependent, although reduction can take place at room temperature. The silver nano-colloid with negative zeta potential also has been confirmed to be more stable. Obtained nanoparticles were characterized by UV-vis spectrophotometer, particle analyzer for zeta (ζ) potential, polydispersity index (PDI), and transmission electron microscope (TEM).

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼