RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Implications of Impacts of Climate Change on Forest Product Flows and Forest Dependent Communities in the Western Ghats, India

        Murthy, Indu K.,Bhat, Savithri,Sathyanarayan, Vani,Patgar, Sridhar,M., Beerappa,Bhat, P.R.,Bhat, D.M.,Gopalakrishnan, Ranjith,Jayaraman, Mathangi,Munsi, Madhushree,N.H., Ravindranath,M.A., Khalid,M., Institute of Forest Science 2014 Journal of Forest Science Vol.30 No.2

        The tropical wet evergreen, tropical semi evergreen and moist deciduous forest types are projected to be impacted by climate change. In the Western Ghats region, a biodiversity hotspot, evergreen forests including semi evergreen account for 30% of the forest area and according to climate change impact model projections, nearly a third of these forest types are likely to undergo vegetation type change. Similarly, tropical moist deciduous forests which account for about 28% of the forest area are likely to experience change in about 20% of the area. Thus climate change could adversely impact forest biodiversity and product flow to the forest dependent households and communities in Uttara Kannada district of the Western Ghats. This study analyses the distribution of non-timber forest product yielding tree species through a network of twelve 1-ha permanent plots established in the district. Further, the extent of dependence of communities on forests is ascertained through questionnaire surveys. On an average 21% and 28% of the tree species in evergreen and deciduous forest types, respectively are, non-timber forest product yielding tree species, indicating potential high levels of supply of products to communities. Community dependence on non-timber forest products is significant, and it contributes to Rs. 1199 and Rs. 3561/household in the evergreen and deciduous zones, respectively. Given that the bulk of the forest grids in Uttara Kannada district are projected to undergo change, bulk of the species which provide multiple forest products are projected to experience die back and even mortality. Incorporation of climate change projections and impacts in forest planning and management is necessary to enable forest ecosystems to enhance resilience.

      • SCOPUSKCI등재
      • KCI등재

        Barriers to Realization of Forestry Mitigation Potential in India

        Murthy, Indu K,Prasad KV, Devi Institute of Forest Science 2018 Journal of Forest Science Vol.34 No.5

        Implementation of mitigation options on land is important for realisation of the goals of the Paris Agreement to stabilize temperature at $2^{\circ}C$. In India, the Intended Nationally Determined Contribution (INDC) targets include a forestry goal of creation of carbon sinks of 2.5 to 3 billion tonnes by 2030. There are however, multiple barriers to implementation of forestry mitigation options in India. They include environmental, social, financial, technological and institutional barriers. The barriers are varied not just across land categories but also for a land category depending on its regional location and distribution. In addition to these barriers is the impeding climate change that places at risk realisation of the mitigation potential as rising temperatures, drought, and fires associated with projected climate change may lead to forests becoming a weaker sink or a net carbon source before the end of the century.

      • KCI등재
      • SCOPUS

        The Relationships between CO<sub>2</sub> Emissions, Economic Growth and Life Expectancy

        MURTHY, Uma,SHAARI, Mohd Shahidan,MARIADAS, Paul Anthony,ABIDIN, Noorazeela Zainol Korea Distribution Science Association 2021 The Journal of Asian Finance, Economics and Busine Vol.8 No.2

        The issue of the relationship between environmental degradation and human health has been widely addressed by medical doctors. However, economists have sparsely debated it. The release of carbon dioxide (CO2) into the air can cause several environmental problems and, thus, it can affect human health. Therefore, it is imperative to examine the effect of CO2 emissions on life expectancy in the D-8 countries (Malaysia, Indonesia, Bangladesh, Nigeria, Egypt, Iran, Pakistan, and Turkey) from 1992 to 2017. The panel ARDL method is employed and, then, the PMG estimator is selected. The results show that economic growth, population growth and health expenditure can significantly and positively affect life expectancy, but CO2 emissions can have a significant and negative effect on life expectancy. Since, the major findings reveal that life expectancy can be explained by CO2 emissions. Hence, it is important to formulate policies on reducing CO2 emissions so that life expectancy will not be affected. Energy diversification policies should be formulated or improved in some countries. This is to ensure that the countries are not highly dependent on non-renewable energy that can harm the environment. The government should increase its expenditure on the health sector to save more lives by extend human lifespan.

      • Meta-analysis of GSTM1 and GSTT1 Polymorphisms and Risk of Nasopharyngeal Cancer

        Murthy, Archana Krishna,Kumar, Vinod,Suresh, K.P. Asian Pacific Journal of Cancer Prevention 2013 Asian Pacific journal of cancer prevention Vol.14 No.3

        Background: Studies of associations between genetic polymorphism of glutathione S-transferase M1 (GSTM1) and glutathione S-transferase T1 (GSTT1) with risk of nasopharyngeal cancer (NPC) have generated conflicting results. Thus, a meta-analysis was performed to clarify the effects of GSTM1 and GSTT1 polymorphisms on the risk of developing NPC. Materials and Methods: A literature search in two electronic databases namely PubMed and EMBASE up to December 2012 was conducted and eligible papers were finally selected based on the inclusion and exclusion criteria. The pooled odds ratio (OR) and presence of heterogeneity and publication bias in those studies were evaluated. Results: A total of 9 studies concerning nasopharyngeal cancer were evaluated. Analyses of all relevant studies showed increased NPC risk to be significantly associated with the null genotypes of GSTMI (OR=1.43, 95%CI 1.24-1.66) and GSTT1 (OR=1.28, 95%CI=1.09-1.51). In addition, evidence of publication bias was detected among the studies on GSTM1 polymorphism. Conclusions: This meta-analysis demonstrated the GSTM1 and GSTT1 null genotypes are associated with an increased risk of NPC.

      • SCIESCOPUS

        Prediction of flexural behaviour of RC beams strengthened with ultra high performance fiber reinforced concrete

        Murthy A, Ramachandra,Aravindan, M.,Ganesh, P. Techno-Press 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.65 No.3

        This paper predicts the flexural behaviour of reinforced concrete (RC) beams strengthened with a precast strip of ultra-high performance fiber-reinforced concrete (UHPFRC). In the first phase, ultimate load capacity of preloaded and strengthened RC beams by UHPFRC was predicted by using various analytical models available in the literature. RC beams were preloaded under static loading approximately to 70%, 80% and 90% of ultimate load of control beams. The models such as modified Kaar and sectional analysis predicted the ultimate load in close agreement to the corresponding experimental observations. In the second phase, the famous fatigue life models such as Papakonstantinou model and Ferrier model were employed to predict the number of cycles to failure and the corresponding deflection. The models were used to predict the life of the (i) strengthened RC beams after subjecting them to different pre-loadings (70%, 80% and 90% of ultimate load) under static loading and (ii) strengthened RC beams after subjecting them to different preloading cycles under fatigue loading. In both the cases precast UHPFRC strip of 10 mm thickness is attached on the tension face. It is found that both the models predicted the number of cycles to failure and the corresponding deflection very close to the experimental values. It can be concluded that the models are found to be robust and reliable for cement based strengthening systems also. Further, the Wang model which is based on Palmgren-Miner's rule is employed to predict the no. of cycles to failure and it is found that the predicted values are in very good agreement with the corresponding experimental observations.

      • Evaluation of mechanical properties for high strength and ultrahigh strength concretes

        Murthy, A. Ramachandra,Iyer, Nagesh R.,Prasad, B.K. Raghu Techno-Press 2013 Advances in concrete construction Vol.1 No.4

        Due to fast growth in urbanisation, a highly developed infrastructure is essential for economic growth and prosperity. One of the major problems is to preserve, maintain, and retrofit these structures. To meet the requirements of construction industry, the basic information on all the mechanical properties of various concretes is essential. This paper presents the details of development of various concretes, namely, normal strength concrete (around 50 MPa), high strength concrete (around 85 MPa) and ultra high strength concrete (UHSC) (around 120 MPa) including their mechanical properties. The various mechanical properties such as compressive strength, split tensile strength, modulus of elasticity, fracture energy and tensile stress vs crack width have been obtained from the respective test results. It is observed from the studies that a higher value of compressive strength, split tensile strength and fracture energy is achieved in the case of UHSC, which can be attributed to the contribution at different scales viz., at the meso scale due to the fibers and at the micro scale due to the close packing of grains which is on account of good grading of the particles. Micro structure of UHSC mix has been examined for various magnifications to identify the pores if any present in the mix. Brief note on characteristic length and brittleness number has been given.

      • Effect of steel fibres and nano silica on fracture properties of medium strength concrete

        Murthy, A. Ramachandra,Ganesh, P. Techno-Press 2019 Advances in concrete construction Vol.7 No.3

        This study presents the fracture properties of nano modified medium strength concrete (MSC). The nano particle used in this study is nano silica which replaces cement about 1 and 2% by weight, and the micro steel fibers are added about 0.4% volume of concrete. In addition to fracture properties, mechanical properties, namely, compressive strength, split tensile strength, and flexural strength of nano modified MSC are studied. To ensure the durability of the MSC, durability studies such as rapid chloride penetration test, sorptivity test, and water absorption test have been carried out for the nano modified MSC. From the study, it is observed that significant performance improvement in nano modified MSC in terms of strength and durability which could be attributed due to the addition pozzolanic reaction and the filler effect of nano silica. The incorporation of nano silica increases the fracture energy about 30% for mix without nano silica. Also, size independent fracture energy is arrived using two popular methods, namely, RILEM work of fracture method with $P-{\delta}$ tail correction and boundary effect method. Both the methods resulted in nearly the same size-independent $G_F$ irrespective of the notch to depth ratio of the same specimen. This shows evidence that either of the two procedures could be used in practice for analysis of cracked concrete structures.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼