RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Sinking Particle Flux in the Subtropical Oligotrophic Northwestern Pacific from a Short-term Sediment Trap Experiment

        김형직,김종욱,김동선,Michael T. Chandler,손승규 한국해양과학기술원 2018 Ocean science journal Vol.53 No.2

        Time-series sediment traps were deployed in the subtropical oligotrophic northwestern Pacific (SONP) at three depths from August to September 2015 to better understand vertical flux of sinking particles. Sinking particles were collected at 5-day intervals over the sediment trap deployment period. The average total mass flux at water depths of 400 m, 690 m, and 1,710 m was 9.1, 4.4, and 4.1 mg m-2day-1, respectively. CaCO3 materials constituted 50 to 70% of sinking particles while in comparison particulate organic carbon (POC) constituted up to 20%. A synchronous variation of total mass flux was observed at the three depths, indicating that calcite-dominated particles sank from 400 to 1,710 m within a 5-day period. POC flux at these water depths was 2.4, 0.38, and 0.31 mg m-2day-1, respectively. Our results indicate low transfer efficiencies of 16% from 400 to 690 m and 13% for the 400 to 1,710 m depth range. The estimated transfer efficiencies were significantly lower than those observed at the K2 station in the northwest Pacific subarctic gyre, presumably because of a prevalence of pico-cyanobacteria in the SONP. Because cyanobacteria have a semi-permeable proteinaceous shell, they are more readily remineralized by bacteria than are siliceous phytoplankton in the northwest Pacific subarctic gyre. Continued surface water warming and expansion of the SONP will likely have a profound impact on ocean acidification in the northwest Pacific, possibly affecting the transfer efficiency of sinking POC to the deep-sea.

      • KCI등재

        Sinking Particle Flux in the Subtropical Oligotrophic Northwestern Pacific from a Short-term Sediment Trap Experiment

        Kim, Hyung Jeek,Kim, Jonguk,Kim, Dongseon,Chandler, Michael T.,Son, Seung Kyu Korean Ocean Research & Development Institute and 2018 OCEAN SCIENCE JOURNAL Vol.53 No.2

        Time-series sediment traps were deployed in the subtropical oligotrophic northwestern Pacific (SONP) at three depths from August to September 2015 to better understand vertical flux of sinking particles. Sinking particles were collected at 5-day intervals over the sediment trap deployment period. The average total mass flux at water depths of 400 m, 690 m, and 1,710 m was 9.1, 4.4, and <TEX>$4.1mg\;m^{-2}day^{-1}$</TEX>, respectively. <TEX>$CaCO_3$</TEX> materials constituted 50 to 70% of sinking particles while in comparison particulate organic carbon (POC) constituted up to 20%. A synchronous variation of total mass flux was observed at the three depths, indicating that calcite-dominated particles sank from 400 to 1,710 m within a 5-day period. POC flux at these water depths was 2.4, 0.38, and <TEX>$0.31mg\;m^{-2}day^{-1}$</TEX>, respectively. Our results indicate low transfer efficiencies of 16% from 400 to 690 m and 13% for the 400 to 1,710 m depth range. The estimated transfer efficiencies were significantly lower than those observed at the K2 station in the northwest Pacific subarctic gyre, presumably because of a prevalence of pico-cyanobacteria in the SONP. Because cyanobacteria have a semi-permeable proteinaceous shell, they are more readily remineralized by bacteria than are siliceous phytoplankton in the northwest Pacific subarctic gyre. Continued surface water warming and expansion of the SONP will likely have a profound impact on ocean acidification in the northwest Pacific, possibly affecting the transfer efficiency of sinking POC to the deep-sea.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼