RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Review : Alpha-Ketoglutarate: Physiological Functions and Applications

        ( Nan Wu ),( Mingyao Yang ),( Uma Gaur ),( Huailiang Xu ),( Yongfang Yao ),( Diyan Li ) 한국응용약물학회 2016 Biomolecules & Therapeutics(구 응용약물학회지) Vol.24 No.1

        Alpha-ketoglutarate (AKG) is a key molecule in the Krebs cycle determining the overall rate of the citric acid cycle of the organism. It is a nitrogen scavenger and a source of glutamate and glutamine that stimulates protein synthesis and inhibits protein degradation in muscles. AKG as a precursor of glutamate and glutamine is a central metabolic fuel for cells of the gastrointestinal tract as well. AKG can decrease protein catabolism and increase protein synthesis to enhance bone tissue formation in the skeletal muscles and can be used in clinical applications. In addition to these health benefits, a recent study has shown that AKG can extend the lifespan of adult Caenorhabditis elegans by inhibiting ATP synthase and TOR. AKG not only extends lifespan, but also delays age-related disease. In this review, we will summarize the advances in AKG research field, in the content of its physiological functions and applications.

      • SCIESCOPUSKCI등재

        Alpha-Ketoglutarate: Physiological Functions and Applications

        Wu, Nan,Yang, Mingyao,Gaur, Uma,Xu, Huailiang,Yao, Yongfang,Li, Diyan The Korean Society of Applied Pharmacology 2016 Biomolecules & Therapeutics(구 응용약물학회지) Vol.24 No.1

        Alpha-ketoglutarate (AKG) is a key molecule in the Krebs cycle determining the overall rate of the citric acid cycle of the organism. It is a nitrogen scavenger and a source of glutamate and glutamine that stimulates protein synthesis and inhibits protein degradation in muscles. AKG as a precursor of glutamate and glutamine is a central metabolic fuel for cells of the gastrointestinal tract as well. AKG can decrease protein catabolism and increase protein synthesis to enhance bone tissue formation in the skeletal muscles and can be used in clinical applications. In addition to these health benefits, a recent study has shown that AKG can extend the lifespan of adult Caenorhabditis elegans by inhibiting ATP synthase and TOR. AKG not only extends lifespan, but also delays age-related disease. In this review, we will summarize the advances in AKG research field, in the content of its physiological functions and applications.

      • KCI등재

        Preparation and characterization of boron films used for boron-lined gaseous neutron detectors

        Deng Chao,Wang Qibiao,Wu Yadong,Peng Shuming,Liu Fule,Li Huailiang,Cheng Jianfeng,Tuo Xianguo 한국물리학회 2021 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.79 No.7

        Boron-lined gaseous neutron detectors are being widely used in neutron detection to replace 3He proportional counters, and the boron film’s parameters comprise the key factors influencing the performance of such detectors. However, the method of characterizing boron film is relatively simple at present. In this study, boron films stuck to ultrathin glass substrate with different mass proportions of epoxy to natural boron (MPENBs) were prepared. A variety of characterization methods, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, white-light interferometry, and multiple tape tests, were used to test the boron films simultaneously, and the test results are discussed herein. Moreover, neutron imaging was conducted to analyze the uniformity of boron-10 atoms. These characterization results demonstrate that the optimized MPENB formulation is 0.16 with the boron atomic ratio of chemical elements (ARCE) at approximately 68.8% and surface roughness Sa = 1.457 μm and that the structure of boron film is uniform and fluffy, contributing to improving the boron-lined method.

      • KCI등재

        Differences in the gut microbiota between Cercopithecinae and Colobinae in captivity

        Zongjin Huan,Yongfang Yao,Jianqiu Yu,Hongwei Chen,Meirong Li,Chaojun Yang,Bo Zhao,Qingyong Ni,Mingwang Zhang,Meng Xie,Huailiang Xu 한국미생물학회 2020 The journal of microbiology Vol.58 No.5

        The gut microbiome of captive primates can provide a window into their health and disease status. The diversity and composition of gut microbiota are influenced by not only host phylogeny, but also host diet. Old World monkeys (Cercopithecidae) are divided into two subfamilies: Cercopithecinae and Colobinae. The diet and physiological digestive features differ between these two subfamilies. Accordingly, highthroughput sequencing was used to examine gut microbiota differences between these two subfamilies, using data from 29 Cercopithecinae individuals and 19 Colobinae individuals raised in captivity. Through a comparative analysis of operational taxonomic units (OTUs), significant differences in the diversity and composition of gut microbiota were observed between Cercopithecinae and Colobinae. In particular, the gut microbiota of captive Old World monkeys clustered strongly by the two subfamilies. The Colobinae microbial diversity was higher than that of Cercopithecinae. Additionally, Firmicutes, Lactobacillaceae, Veillonellaceae, and Prevotella abundance were higher in Cercopithecinae, while Bacteroidetes, Ruminococcaceae, Christensenellaceae, Bacteroidaceae, and Acidaminococcaceae abundance were higher in Colobinae. PICRUSt analysis revealed that the predicted metagenomes of metabolic pathways associated with proteins, carbohydrates, and amino acids were significantly higher in Colobinae. In the context of host phylogeny, these differences between Cercopithecinae and Colobinae could reflect adaptations associated with their respective diets. This well-organized dataset is a valuable resource for future related research on primates and gut microbiota. Moreover, this study may provide useful insight into animal management practices and primate conservation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼