RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Extensometers results correction in concrete dams: A case study in RCC Zhaveh Dam

        Ziaei, Ahad,Ahangari, Kaveh,Moarefvand, Parviz,Mirzabozorg, Hasan Techno-Press 2017 Structural monitoring and maintenance Vol.4 No.1

        Since extensometers are used to determine the absolute deformation of foundation and abutments and all results are obtained in reference to the base rod, the accuracy of these results has been constantly a subject of debate. In this regard, locating and installing extensometers outside the range of effect zone is also another challenge. The main purpose of this paper is to investigate and modify extensometers results based on the mentioned issues. For this aim, the concrete RCC Zhaveh dam in Iran was selected as the case study. To study the results of extensometers installed in this dam, first, the 3DEC_DP 5.00 software was applied for numerical modeling. Parameters such as discontinuities, dead load and piezometric pressure in the interface of concrete and rock were considered. Next, using the results obtained from 6 extensometers in foundation and abutments and 4 clinometers in dam body, the numerical model was calibrated through back analysis method. The results indicate that the base rod is moved and is not recommended being used as the base point. In other words, because installation of base anchor outside the range of effect zone is not possible due to the operational and economic considerations, the obtained results are not accurate enough. The results indicate a considerable 2-3 mm displacement of the base rod (location of the base anchor) in reference to the real zero point location, which must be added to the base rod results.

      • KCI등재

        Decision on Coarse Aggregates Borrow Sources of Concrete

        Mojtaba Golestanifar,Kaveh Ahangari 대한토목학회 2011 KSCE JOURNAL OF CIVIL ENGINEERING Vol.15 No.6

        Mineral aggregate as a stable, inexpensive, and available material has a fundamental role in engineering behaviors of concrete and its economy. When incompetent and conflicting decision-making criteria such as technical, economic, environmental, and so forth are realized in choosing borrow sources, the problem becomes so complicated that decision-making would be impossible for project planner. In this study, a new model has been developed for evaluating and selecting the optimum borrow source of concrete aggregate using fuzzy multi attribute decision-making techniques. Fuzzy modifications of Analytical Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods have been applied to assess and rank the possible alternatives in uncertain environment. Achievements and results of the developed method have been demonstrated through a real-world case study of coarse aggregate for Sangabad reservoir dam in Iran.

      • SCIESCOPUS

        Optimal monitoring instruments selection using innovative decision support system framework

        Masoumi, Isa,Ahangari, Kaveh,Noorzad, Ali Techno-Press 2018 Smart Structures and Systems, An International Jou Vol.21 No.1

        Structural monitoring is the most important part of the construction and operation of the embankment dams. Appropriate instruments selection for dams is vital, as inappropriate selection causes irreparable loss in critical condition. Due to the lack of a systematic approach to determine adequate instruments, a framework based on three comparable Multi-Attribute Decision Making (MADM) methods, which are VIKOR, technique of order preference by similarity to ideal solution (TOPSIS) and Preference ranking organization method for enrichment evaluation (PROMETHEE), has been developed. MADM techniques have been widely used for optimizing priorities and determination of the most suitable alternatives. However, the results of the different methods of MADM have indicated inconsistency in ranking alternatives due to closeness of judgements from decision makers. In this study, 9 criteria and 42 geotechnical instruments have been applied. A new method has been developed to determine the decision makers' importance weights and an aggregation method has been introduced to optimally select the most suitable instruments. Consequently, the outcomes of the aggregation ranking correlate about 94% with TOPSIS and VIKOR, and 83% with PROMETHEE methods' results providing remarkably appropriate prioritisation of instruments for embankment dams.

      • SCIESCOPUS

        Numerical investigation of the impact of geological discontinuities on the propagation of ground vibrations

        Haghnejad, Ali,Ahangari, Kaveh,Moarefvand, Parviz,Goshtasbi, Kamran Techno-Press 2018 Geomechanics & engineering Vol.14 No.6

        Blast-induced ground vibrations by a significant amount of explosives may cause many problems for mining slope stability. Geological discontinuities have a significant influence on the transmission of dynamic pressure of detonation and according to their position relative to the slope face may have damaging or useful impacts on the slope stability. In this study, the effect of geological discontinuities was investigated by modelling a slope with geological discontinuities through applying the dynamic pressure in three-dimensional discrete element code (3DEC). The geological discontinuities in four states that generally apperceived in mine slopes are considered. Given the advantages of the pressure decay function defined by some researcher, this type of function was used to develop the pressure-time profile. The peak particle velocities (PPV) values were monitored along an axis by utilization of Fish programming language and the results were used as an indicator to measure the effects. As shown in the discontinuity-free model, PPV empirical models are reliable in rocks lacking discontinuities or tightly jointed rock masses. According to the other results, the empirical models cannot be used for the case where the rock mass contains discontinuities with any direction or dip. With regard to PPVs, when the direction of discontinuities is opposite to that of the slope face, the dynamic pressure of detonation is significantly damped toward the slope direction at the surface of discontinuities. On the other hand, when the discontinuities are horizontal, the dynamic pressure of detonation affects the rock mass to a large distance.

      • Reliable monitoring of embankment dams with optimal selection of geotechnical instruments

        Masoumi, Isa,Ahangari, Kaveh,Noorzad, Ali Techno-Press 2017 Structural monitoring and maintenance Vol.4 No.1

        Monitoring is the most important part of the construction and operation of the embankment dams. Applied instruments in these dams should be determined based on dam requirements and specifications. Instruments selection considered as one of the most important steps of monitoring plan. Competent instruments selection for dams is very important, as inappropriate selection causes irreparable loss in critical condition. Lack of a systematic method for determining instruments has been considered as a problem for creating an efficient selection. Nowadays, decision making methods have been used widely in different sciences for optimal determination and selection. In this study, the Multi-Attribute Decision Making is applied by considering 9 criteria and categorisation of 8 groups of geotechnical instruments. Therefore, the Analytic Hierarchy Process and Multi-Criteria Optimisation and Compromise Solution methods are employed in order to determine the attributes' importance weights and to prioritise of instruments for embankment dams, respectively. This framework was applied for a rock fill with clay core dam. The results indicated that group decision making optimizes the selection and prioritisation of monitoring instruments for embankment dams, and selected instruments are reliable based on the dam specifications.

      • KCI등재

        Optimal monitoring instruments selection using innovative decision support system framework

        Isa Masoumi,Kaveh Ahangari,Ali Noorzad 국제구조공학회 2018 Smart Structures and Systems, An International Jou Vol.21 No.1

        Structural monitoring is the most important part of the construction and operation of the embankment dams. Appropriate instruments selection for dams is vital, as inappropriate selection causes irreparable loss in critical condition. Due to the lack of a systematic approach to determine adequate instruments, a framework based on three comparable Multi-Attribute Decision Making (MADM) methods, which are VIKOR, technique of order preference by similarity to ideal solution (TOPSIS) and Preference ranking organization method for enrichment evaluation (PROMETHEE), has been developed. MADM techniques have been widely used for optimizing priorities and determination of the most suitable alternatives. However, the results of the different methods of MADM have indicated inconsistency in ranking alternatives due to closeness of judgements from decision makers. In this study, 9 criteria and 42 geotechnical instruments have been applied. A new method has been developed to determine the decision makers\' importance weights and an aggregation method has been introduced to optimally select the most suitable instruments. Consequently, the outcomes of the aggregation ranking correlate about 94% with TOPSIS and VIKOR, and 83% with PROMETHEE methods' results providing remarkably appropriate prioritisation of instruments for embankment dams.

      • SCIESCOPUS

        A new geomechanical approach to investigate the role of in-situ stresses and pore pressure on hydraulic fracture pressure profile in vertical and horizontal oil wells

        Saberhosseini, Seyed Erfan,Keshavarzi, Reza,Ahangari, Kaveh Techno-Press 2014 Geomechanics & engineering Vol.7 No.3

        Estimation of fracture initiation pressure is one of the most difficult technical challenges in hydraulic fracturing treatment of vertical or horizontal oil wells. In this study, the influence of in-situ stresses and pore pressure values on fracture initiation pressure and its profile in vertical and horizontal oil wells in a normal stress regime have been investigated. Cohesive elements with traction-separation law (XFEM-based cohesive law) are used for simulating the fracturing process in a fluid-solid coupling finite element model. The maximum nominal stress criterion is selected for initiation of damage in the cohesive elements. The stress intensity factors are verified for both XFEM-based cohesive law and analytical solution to show the validation of the cohesive law in fracture modeling where the compared results are in a very good agreement with less than 1% error. The results showed that, generally by increasing the difference between the maximum and minimum horizontal stress, the fracture pressure and its profile has been strongly changed in the vertical wells. Also, it's been clearly observed that in a horizontal well drilled in the direction of minimum horizontal stress, the values of fracture pressure have been significantly affected by the difference between overburden pressure and maximum horizontal stress. Additionally, increasing pore pressure from under-pressure regime to over-pressure state has made a considerable fall on fracture pressure in both vertical and horizontal oil wells.

      • SCIESCOPUS

        Geomechanical and thermal reservoir simulation during steam flooding

        Taghizadeh, Roohollah,Goshtasbi, Kamran,Manshad, Abbas Khaksar,Ahangari, Kaveh Techno-Press 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.66 No.4

        Steam flooding is widely used in heavy oil reservoir with coupling effects among the formation temperature change, fluid flow and solid deformation. The effective stress, porosity and permeability in this process can be affected by the multi-physical coupling of thermal, hydraulic and mechanical processes (THM), resulting in a complex interaction of geomechanical effects and multiphase flow in the porous media. Quantification of the state of deformation and stress in the reservoir is therefore essential for the correct prediction of reservoir efficiency and productivity. This paper presents a coupled fluid flow, thermal and geomechanical model employing a program (MATLAB interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators for coupled THM processes in multiphase reservoir modeling. In each simulation cycle, time dependent reservoir pressure and temperature fields obtained from three dimensional compositional reservoir models were transferred into finite element reservoir geomechanical models in ABAQUS as multi-phase flow in deforming reservoirs cannot be performed within ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, the proposed approach is illustrated on a complex coupled problem related to steam flooding in an oil reservoir. The reservoir coupled study showed that permeability and porosity increase during the injection scenario and increasing rate around injection wells exceed those of other similar comparable cases. Also, during injection, the uplift occurred very fast just above the injection wells resulting in plastic deformation.

      • KCI등재

        Geomechanical and thermal reservoir simulation during steam flooding

        Roohollah Taghizadeh,Kamran Goshtasbi,Abbas Khaksar Manshad,Kaveh Ahangari 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.66 No.4

        Steam flooding is widely used in heavy oil reservoir with coupling effects among the formation temperature change, fluid flow and solid deformation. The effective stress, porosity and permeability in this process can be affected by the multi-physical coupling of thermal, hydraulic and mechanical processes (THM), resulting in a complex interaction of geomechanical effects and multiphase flow in the porous media. Quantification of the state of deformation and stress in the reservoir is therefore essential for the correct prediction of reservoir efficiency and productivity. This paper presents a coupled fluid flow, thermal and geomechanical model employing a program (MATLAB interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators for coupled THM processes in multiphase reservoir modeling. In each simulation cycle, time dependent reservoir pressure and temperature fields obtained from three dimensional compositional reservoir models were transferred into finite element reservoir geomechanical models in ABAQUS as multi-phase flow in deforming reservoirs cannot be performed within ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, the proposed approach is illustrated on a complex coupled problem related to steam flooding in an oil reservoir. The reservoir coupled study showed that permeability and porosity increase during the injection scenario and increasing rate around injection wells exceed those of other similar comparable cases. Also, during injection, the uplift occurred very fast just above the injection wells resulting in plastic deformation.

      • Geomechanical assessment of reservoir and caprock in CO<sub>2</sub> storage: A coupled THM simulation

        Taghizadeh, Roohollah,Goshtasbi, Kamran,Manshad, Abbas Khaksar,Ahangari, Kaveh Techno-Press 2019 Advances in energy research Vol.6 No.1

        Anthropogenic greenhouse gas emissions are rising rapidly despite efforts to curb release of such gases. One long term potential solution to offset these destructive emissions is the capture and storage of carbon dioxide. Partially depleted hydrocarbon reservoirs are attractive targets for permanent carbon dioxide disposal due to proven storage capacity and seal integrity, existing infrastructure. Optimum well completion design in depleted reservoirs requires understanding of prominent geomechanics issues with regard to rock-fluid interaction effects. Geomechanics plays a crucial role in the selection, design and operation of a storage facility and can improve the engineering performance, maintain safety and minimize environmental impact. In this paper, an integrated geomechanics workflow to evaluate reservoir caprock integrity is presented. This method integrates a reservoir simulation that typically computes variation in the reservoir pressure and temperature with geomechanical simulation which calculates variation in stresses. Coupling between these simulation modules is performed iteratively which in each simulation cycle, time dependent reservoir pressure and temperature obtained from three dimensional compositional reservoir models in ECLIPSE were transferred into finite element reservoir geomechanical models in ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, efficiency of this approach is demonstrated through a case study of oil production and subsequent carbon storage in an oil reservoir. The methodology and overall workflow presented in this paper are expected to assist engineers with geomechanical assessments for reservoir optimum production and gas injection design for both natural gas and carbon dioxide storage in depleted reservoirs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼