RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Shrinkage Crack Detection in Expansive Soil using Deep Convolutional Neural Network and Transfer Learning

        A. Diana Andrushia,T. Mary Neebha,S. Umadevi,N. Anand,Katherine A. Cashell 대한토목학회 2022 KSCE JOURNAL OF CIVIL ENGINEERING Vol.26 No.10

        The formation of shrinkage cracks is a natural phenomenon in expansive soils. The development of these cracks affects both the physical and mechanical properties of the soil. This paper proposes new procedures for predicting and detecting the formation of crack patterns in expansive soils, based on customized Convolution Neural Network (CNN) and transfer learning. A total of four different deep learning models are developed to detect the soil crack pattern by changing the convolution layers and hyper-parameters in the analysis. The novelty of the proposed detection methods lies in the use of customized CNN models in shrinkage crack detection for expansive soils. The customized CNN models are constructed by varying the number of convolution layers and the hyperparameters. The results show that the proposed CNN models provide very accurate results and are capable of detecting the presence of cracks in the soil with great accuracy. The best results are from one of the customized CNN models namely the Customized CNN Model 2 which consists of five convolution layers, three activation layers, one pooling layer, two fully connected layers, and a softmax layer. The results from this model are compared with other well-known approaches from the literature and are shown to provide improved results. Overall, the proposed deep learning methods developed in this paper produce excellent results in terms of the accurate detection of shrinkage soil cracks and can also be applied to other types of soil cracks.

      • KCI등재

        Structural Behaviour and Fire Design of Duplex and Ferritic Stainless Steel CHS Stub Columns

        Asif Mohammed,Katherine A. Cashell 한국강구조학회 2021 International Journal of Steel Structures Vol.21 No.4

        This paper investigates the structural behaviour and design of duplex and ferritic stainless steel stub columns with a circular hollow cross-section (CHS) at elevated temperature. A numerical model is developed to supplement the limited test results on stainless steel CHS stub columns in the literature. Following validation, the numerical approach is employed to gain an understanding of the critical behavioural characteristics which have not previously been studied. In addition, the paper considers and extends the continuous strength method (CSM) to include duplex and ferritic stainless steel for CHS stub columns in fire. The CSM employs a base curve linking the cross-section resistance to its deformation capacity and implements an elastic, linear hardening material model. The cross-sectional resistances obtained from the proposed CSM are compared with those from the numerical analysis, as well as with the standardised procedures in the European, American and Australia/New Zealand design standards. It is demonstrated that CSM can lead to more accurate and less scattered strength predictions than current design codes.

      • KCI등재

        The influence of different factors on buildings’ height in the absence of shear walls in low seismic regions

        Reza Keihani,Ali Bahadori-Jahromi,Charles Goodchild,Katherine A. Cashell 국제구조공학회 2020 Structural Engineering and Mechanics, An Int'l Jou Vol.76 No.1

        Shear walls are structural members in buildings that are used extensively in reinforced concrete frame buildings, and almost exclusively in the UK, regardless of whether or not they are actually required. In recent years, the UK construction industry, led by the Concrete Centre, has questioned the need for such structural elements in low to mid-rise reinforced concrete frame buildings. In this context, a typical modern, 5-storey residential building is studied, and its existing shear walls are replaced with columns as used elsewhere in the building. The aim is to investigate the impact of several design variables, including concrete grade, column size, column shape and slab thickness, on the building’s structural performance, considering two punching shear limits (VEd/VRd,c), lateral drift and accelerations, to evaluate its maximum possible height under wind actions without the inclusion of shear walls. To facilitate this study, a numerical model has been developed using the ETABS software. The results demonstrate that the building examined does not require shear walls in the design and has no lateral displacement or acceleration issues. In fact, with further analysis, it is shown that a similar building could be constructed up to 13 and 16 storeys high for 2 and 2.5 punching shear ratios (VEd/VRd,c), respectively, with adequate serviceability and strength, without the need for shear walls, albeit with thicker columns.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼