http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Kaewsuk, J.,Thorasampan, W.,Thanuttamavong, M.,Seo, G.T. Academic Press 2010 Journal of environmental management Vol.91 No.5
This experimental study was conducted to evaluate a membrane sequencing batch reactor (MSBR) with mixed culture photosynthetic bacteria for dairy wastewater treatment. The study was undertaken in two steps: laboratory and pilot scale experiments. In the first step, kinetics analysis of the MSBR was carried out in a laboratory scale experiment with influent COD concentration of 2500 mg/L. The pilot scale experiment was conducted to investigate the performance of the MSBR and checked the suitability of the kinetics for an engineering design. The kinetic coefficients K<SUB>s</SUB> k, k<SUB>d</SUB> Y and μ<SUB>m</SUB>were found to be 174-mg-COD/L, 7.42/d, 0.1383/d, 0.2281/d and 1.69/d, respectively. There were some deviations of COD removal efficiency between the design value and the actual value. From the kinetics estimation, COD effluent from the design was 27 mg/L while the average actual COD effluent from the experiment was 149 mg/L. Due to the different light source condition, the factors relating to light energy (i.e. L<SUB>f</SUB>and IR<SUB>%</SUB> must be incorporated into engineering design and performance prediction with these kinetic coefficients of the photosynthetic MSBR.
Seo, Gyu Tae,Kim, Jin Tae,Kim, Sung Su,Kaewsuk, Jutamas Trans Tech Publications, Ltd. 2009 Materials science forum Vol.620 No.-
<P>The objective of this study is to develop a novel powder activated carbon (PAC) by surface modification with magnetite nano-particles for enhanced removal of NOM in water. The PAC used for experiment was two types, SAC (wood-based) and MAC (coal-based). First the PAC was treated by heat at 650 or 900 °C for 1hr under N2. And then the PAC surface was synthesized with magnetite nano-particles at the same condition. Adsorption tests of NOM were carried out to identify functional characteristics of the surface modified. Despite reduced surface area, adsorption capacity of the surface modified PAC was comparable to the virgin one. However much increased adsorption capacity was obtained by heat treatment of the PACs. SEC and SUVA254 results showed no specific selectivity in removal of NOM by the modification of PAC surface characteristics. Enhanced oxidation of the NOM was also observed by the magnetite nano-particle synthetic PACs in contact with ozone. Conclusively the surface modification of the PAC has high potential as a novel adsorption material for advanced water treatment.</P>