RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Emodin ameliorates high-glucose induced mesangial p38 over-activation and hypocontractility via activation of PPARγ

        Yi Liu,Lei Jia,Zun Chang Liu,Hong Zhang,Peng Ju Zhang,Qiang Wan,Rong Wang 생화학분자생물학회 2009 Experimental and molecular medicine Vol.41 No.9

        Early stage diabetic nephropathy is characterized by elevated glomerular filtration. Recent studies have identified high-glucose induced p38 MAPK (p38) over-activation in mesangial cells. Mesangial hypocontractility is the major underlying mechanism, however, no ameliorating agents are currently available. We investigated the protective effects of emodin on high-glucose induced mesangial cell hypocontractility. Mesangial cells were cultured under normal (5.6 mM) and high glucose (30 mM) conditions. Emodin was administrated at doses of 50 mg/l and 100 mg/l. Angiotension II stimulated cell surface reductions were measured to evaluate cell contractility. p38 activity was detected using Western blotting. To further explore the possible mechanism of emodin, expression of the peroxisome proliferator- activated receptor γ (PPARγ) was measured and its specific inhibitor, gw9662, was administrated. Our results showed: (1) high-glucose resulted in a 280% increase in p38 activity associated with significant impairment of mesangial contractility; (2) emodin treatment dose-dependently inhibited high-glucose induced p38 over-activation (a 40% decrease for 50 mg/l emodin and a 73% decrease for 100 mg/l emodin), and mesangial hypocontractility was ameriolated by emodin; (3) both the PPARγ mRNA and protein levels were elevated after emodin treatment; (4) inhibition of PPARγ using gw9662 effectively blocked the ameliorating effects of emodin on high-glucose induced p38 over-activation and mesangial hypocontractility. Emodin effectively ameliorated p38 over-activation and hypocontractility in high-glucose induced mesangial cells, possibly via activation of PPARγ. Early stage diabetic nephropathy is characterized by elevated glomerular filtration. Recent studies have identified high-glucose induced p38 MAPK (p38) over-activation in mesangial cells. Mesangial hypocontractility is the major underlying mechanism, however, no ameliorating agents are currently available. We investigated the protective effects of emodin on high-glucose induced mesangial cell hypocontractility. Mesangial cells were cultured under normal (5.6 mM) and high glucose (30 mM) conditions. Emodin was administrated at doses of 50 mg/l and 100 mg/l. Angiotension II stimulated cell surface reductions were measured to evaluate cell contractility. p38 activity was detected using Western blotting. To further explore the possible mechanism of emodin, expression of the peroxisome proliferator- activated receptor γ (PPARγ) was measured and its specific inhibitor, gw9662, was administrated. Our results showed: (1) high-glucose resulted in a 280% increase in p38 activity associated with significant impairment of mesangial contractility; (2) emodin treatment dose-dependently inhibited high-glucose induced p38 over-activation (a 40% decrease for 50 mg/l emodin and a 73% decrease for 100 mg/l emodin), and mesangial hypocontractility was ameriolated by emodin; (3) both the PPARγ mRNA and protein levels were elevated after emodin treatment; (4) inhibition of PPARγ using gw9662 effectively blocked the ameliorating effects of emodin on high-glucose induced p38 over-activation and mesangial hypocontractility. Emodin effectively ameliorated p38 over-activation and hypocontractility in high-glucose induced mesangial cells, possibly via activation of PPARγ.

      • KCI등재

        Resistance to neonicotinoid insecticides and expression changes of eighteen cytochrome P450 genes in field populations of Bemisia tabaci from Xinjiang, China

        Wang Qiang,Wang Mei‐Na,Jia Zun‐Zun,Ahmat Tursun,Xie Lin‐Jie,Jiang Wei‐Hua 한국곤충학회 2020 Entomological Research Vol.50 No.4

        The occurrence of Bemisia tabaci poses an increasingly serious threat to cotton and vegetable crops in Xinjiang, China. Currently, neonicotinoid insecticides are commonly used to control the insect, to which resistance is inevitable due to intensive use. However, the resistance status and mechanism of B. tabaci to neonicotinoid insecticides in Xinjiang are poorly understood. Cytochrome P450 monooxygenases represent a key detoxification mechanism in the neonicotinoid resistance of B. tabaci. In this study, the resistance level to imidacloprid and thiamethoxam was investigated using the leaf dipping method in five field populations of B. tabaci from Turpan (TP, two sampling sites), Shache (SC), Hotan (HT) and Yining (YN) in northern and southern Xinjiang. The expression changes of eighteen cytochrome P450 genes from the select B. tabaci populations were determined by real-time fluorescence quantitative PCR (qPCR). The bioassay revealed that the five populations tested had developed moderate to high levels of resistance to imidacloprid (12.26–46.07- fold), while the populations remained sensitive to thiamethoxam except for HT, which had a low level of resistance. The qPCR results showed that the expression levels of five P450 genes, CYP4G68, CYP6CM1, CYP303A1-like, CYP6DZ7 and CYP6DZ4, were significantly higher in some resistant field populations than in the susceptible strain. Resistance to imidacloprid in field populations of B. tabaci might be associated with the increased expression of these five cytochrome P450 genes. The results are useful for further understanding the mechanism of neonicotinoid resistance and will contribute to the management of insecticide-resistant B. tabaci in Xinjiang.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼