RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Radiated disturbance characteristics of SiC MOSFET module

        Huang, Huazhen,Wang, Ningyan,Wu, Jialing,Lu, Tiebing The Korean Institute of Power Electronics 2021 JOURNAL OF POWER ELECTRONICS Vol.21 No.2

        Wide band gap semiconductor device silicon carbide (SiC) metal oxide semiconductor field effect transistors (MOSFETs) have many advantages and are considered to be the most promising alternative to silicon (Si) insulated gate bipolar transistors (IGBTs) in low-/medium-voltage fields. However, a faster switching speed results in more serious electromagnetic disturbance problems in the application of SiC MOSFET. In this paper, an experiment system is established to measure the radiated disturbance of a single SiC MOSFET module operating at 9 kHz-300 MHz. The radiated electric fields of the SiC MOSFET module are mainly concentrated within 160 MHz. The switching voltage and radiated disturbance of the Si IGBT module are measured and compared with those of the SiC MOSFET module. The voltage of the SiC MOSFET has a faster change rate and a higher overshoot, which results in the radiated electric fields of SiC MOSFET module being 5-10 dB higher than those of the Si IGBT module below 8 MHz. The measurement results in the time-domain and frequency-domain correspond. A detailed model of a SiC MOSFET module is established and the radiated electric fields are calculated using the method of moments (MOM). The calculated results show the effectiveness of the model for radiated disturbance prediction. In this paper, the radiated electric fields of a SiC MOSFET module are measured and analyzed, and the calculation model can be used to further evaluate the radiated disturbance characteristics of SiC MOSFET and influencing factors.

      • KCI등재

        Joint wireless and computational resource allocation for ultra-dense mobile-edge computing networks

        ( Junyi Liu ),( Hongbing Huang ),( Yijun Zhong ),( Jiale He ),( Tiancong Huang ),( Qian Xiao ),( Weiheng Jiang ) 한국인터넷정보학회 2020 KSII Transactions on Internet and Information Syst Vol.14 No.7

        In this paper, we study the joint radio and computational resource allocation in the ultra-dense mobile-edge computing networks. In which, the scenario which including both computation offloading and communication service is discussed. That is, some mobile users ask for computation offloading, while the others ask for communication with the minimum communication rate requirements. We formulate the problem as a joint channel assignment, power control and computational resource allocation to minimize the offloading cost of computing offloading, with the precondition that the transmission rate of communication nodes are satisfied. Since the formulated problem is a mixed-integer nonlinear programming (MINLP), which is NP-hard. By leveraging the particular mathematical structure of the problem, i.e., the computational resource allocation variable is independent with other variables in the objective function and constraints, and then the original problem is decomposed into a computational resource allocation subproblem and a joint channel assignment and power allocation subproblem. Since the former is a convex programming, the KKT (Karush-Kuhn-Tucker) conditions can be used to find the closed optimal solution. For the latter, which is still NP-hard, is further decomposed into two subproblems, i.e., the power allocation and the channel assignment, to optimize alternatively. Finally, two heuristic algorithms are proposed, i.e., the Co-channel Equal Power allocation algorithm (CEP) and the Enhanced CEP (ECEP) algorithm to obtain the suboptimal solutions. Numerical results are presented at last to verify the performance of the proposed algorithms.

      • KCI등재

        Fabrication of porous metal fiber sintered sheet as a flow field for proton exchange membrane fuel cell

        Li Shuangli,Zhou Wei,Liu Ruiliang,Huang Jiale,Chu Xuyang 한국물리학회 2020 Current Applied Physics Vol.20 No.5

        To improve the diffusion performance of reactive gas, a porous copper fiber sintered sheet (PCFSS) was fabricated and used as the flow field for proton exchange membrane fuel cell (PEMFC). The pressure and flow velocity distribution of the reaction gas in the PCFSS was firstly compared with the serpentine flow field by using the Fluent simulation software. Our results showed that the superiority of PCFSS in the uniformity of gas diffusion was observed. The total resistance of PEMFC with PCFSS in different porosities was obtained. And the advantages of PCFSS in electronic transmission were found by comparing with the serpentine flow field. Besides, the influences of different operating conditions and different porosities of porous flow fields on the performance of PEMFC were experimentally investigated. With the cell temperature of 70 °C as well as the humidification temperature of 60 °C, a PEMFC with PCFSS of 70% porosity exhibited better performance.

      • KCI등재

        Sensorless Control of the Switched Reluctance Motor Based on the Sliding-Mode Observer

        Li Xinyu,Liu Jiayu,Ge Lefei,Zhong Jixi,Huang Jiale,Zhao Yuchen,Song Shoujun 대한전기학회 2023 Journal of Electrical Engineering & Technology Vol.18 No.2

        To upgrade the application of switched reluctance motors (SRMs) for more electric aircraft, this paper presents a method with sensorless control based on the flux-linkage data from the finite element method. First, a calibration strategy is employed to obtain the flux-linkage characteristics. Then, a sliding-mode observer is used to realize the sensorless control of the SRM. The proposed method only requires the flux-linkage of the SRM at aligned and unaligned rotor positions from the experiment which takes a low-measurement effort to get the rotor position and has better accuracy in position and speed estimation than the FEM. Experimental results verify the accuracy and effectiveness of the proposed method.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼