RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Quantitative structure-property relationship (QSPR) for prediction of CO2 Henry’s law constant in some physical solvents with consideration of temperature effects

        Ali Ebrahimpoor Gorji,Zahra Eshaghi Gorji,Siavash Riahi 한국화학공학회 2017 Korean Journal of Chemical Engineering Vol.34 No.5

        Different types of physical solvents have been utilized for CO2 removal from natural gas in the sweetening process. In this work, quantitative structure-property relationship (QSPR) method is suggested to build powerful models to predict Henry’s law constant (HLC) for CO2 in physical solvents. Modeling the HLC for CO2 as a function of molecular descriptors was achieved by multiple linear regression and descriptor selection was by genetic algorithm. The main proposed model has two simple descriptors, including the number of hydroxyl groups and molecular weight of solvents at fixed temperature. Also, the effect of temperature was studied, and this operational variable was added to the mentioned simple descriptors. In this case, the data set is comprised of 77 HLC for CO2 in solvents and at different temperatures. Several internal and external validation methods demonstrated the excellent ability for prediction, and the average relative deviation of main model was 6.48.

      • KCI등재

        Challenges and opportunities in green hydrogen supply chain through metaheuristic optimization

        Gorji Saman A 한국CDE학회 2023 Journal of computational design and engineering Vol.10 No.3

        A comprehensive analysis of the green hydrogen supply chain is presented in this paper, encompassing production, storage, transportation, and consumption, with a focus on the application of metaheuristic optimization. The challenges associated with each stage are highlighted, and the potential of metaheuristic optimization methods to address these challenges is discussed. The primary method of green hydrogen production, water electrolysis through renewable energy, is outlined along with the importance of its optimization. Various storage methods, such as compressed gas, liquid hydrogen, and material-based storage, are covered with an emphasis on the need for optimization to improve safety, capacity, and performance. Different transportation options, including pipelines, trucks, and ships, are explored, and factors influencing the choice of transportation methods in different regions are identified. Various hydrogen consumption methods and their associated challenges, such as fuel cell performance optimization, hydrogen-based heating systems design, and energy conversion technology choice, are also discussed. The paper further investigates multi-objective approaches for the optimization of problems in this domain. The significant potential of metaheuristic optimization techniques is highlighted as a key to addressing these challenges and improving overall efficiency and sustainability with respect to future trends in this rapidly advancing area.

      • Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)

        Mojtaba Gorji Azandariani,Majid Gholhaki,Mohammad Ali Kafi,Tadeh Zirakian,Afrasyab Khan,Hamid Abdolmaleki,Hamid Shojaeifar 국제구조공학회 2021 Steel and Composite Structures, An International J Vol.39 No.1

        This research endeavor intends to use the implicit finite element method to investigate the structural response of steel shear walls with partial plate-column connection. To this end, comprehensive verification studies are initially performed by comparing the numerical predictions with several reported experimental results in order to demonstrate the reliability and accuracy of the implicit analysis method. Comparison is made between the hysteresis curves, failure modes, and base shear capacities predicted numerically using ABAQUS software and obtained/observed experimentally. Following the validation of the finite element analysis approach, the effects of partial plate-column connection on the strength and stiffness performances of steel shear wall systems with different web-plate slenderness and aspect ratios under monotonic loading are investigated through a parametric study. While removal of the connection between the web-plate and columns can be beneficial by decreasing the overall system demand on the vertical boundary members, based on the results and findings of this study such detachment can lower the stiffness and strength capacities of steel shear walls by about 25%, on average.

      • Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams

        Azandariani, Mojtaba Gorji,Gholami, Mohammad,Nikzad, Akbar Techno-Press 2022 Advances in nano research Vol.12 No.1

        In this paper, the non-linear static analysis of Timoshenko nanobeams consisting of bi-directional functionally graded material (BFGM) with immovable ends is investigated. The scratching in the FG nanobeam mid-plane, is the source of nonlinearity of the bending problems. The nonlocal theory is used to investigate the non-linear static deflection of nanobeam. In order to simplify the formulation, the problem formulas is derived according to the physical middle surface. The Hamilton principle is employed to determine governing partial differential equations as well as boundary conditions. Moreover, the differential quadrature method (DQM) and direct iterative method are applied to solve governing equations. Present results for non-linear static deflection were compared with previously published results in order to validate the present formulation. The impacts of the nonlocal factors, beam length and material property gradient on the non-linear static deflection of BFG nanobeams are investigated. It is observed that these parameters are vital in the value of the non-linear static deflection of the BFG nanobeam.

      • The effect of TiO2 nanoparticles in reduction of environmental pollution in concrete structures

        Tabatabaei, Javad,Gorji, Leila Techno-Press 2019 Advances in concrete construction Vol.7 No.2

        Heterogeneous photocatalysis is developed rapidly in the field of engineering of environmental. It has a good potential to tackle with the enhancing traffic pollution. Adding photocatalyst to usual building materials such as cement and concrete makes friendly environmental materials against the air pollution. TiO2 nanoparticles are a good item for concrete structures for diminishing the air polluting affect by gasses of exhaust. In specific, the transformation of NOx to NO3- is studied and the interaction of TiO2 nanoparticles and concrete is investigated here by experimental test. This paper presents an overview of the principle of photocatalysis and the application in combination with cement, as well as the results of the laboratory research, especially towards air purifying action. In addition, by the analytical models, the influence of TiO2 nanoparticles is studied on the stiffness of the concrete. The Results show that TiO2 nanoparticles have significant effect on the reduction of environmental pollution and increase of stiffness in the concrete structures.

      • KCI등재

        Determination of Dynamic Characteristics of Aluminum 1050 Sheet Using Electromagnetic Forming Ring Expansion Test

        A. Rajabloo,H. Gorji,M. Bakhshi‑Jooybari 대한금속·재료학회 2022 METALS AND MATERIALS International Vol.28 No.7

        A new method based on the EMF ring expansion test has been suggested for determining the dynamic characteristics ofannealed and as-received aluminum 1050 H18 sheet. The proposed method does not need any expensive hardware or datacollector. After performing quasi-static (QS) tensile tests, two coils and three sets of rings were prepared. The rings wereexpanded by coils at different voltages, and the strains induced were measured using 2D scanners. An inverse modelingalgorithm was used as a tool to determine the strain rate hardening coefficient by minimizing the difference between experimentallymeasured strain and that calculated from FEM simulation. The obtained strain-rate hardening coefficient of thematerial shows that annealed aluminum 1050 sheet is sensitive to strain rate, whereas the as-received is not. The obtainedresults showed that the as-received aluminum 1050 sheet depicts brittle failure behavior in both QS tensile test and high strainrate ring expansion test, but the annealed one withstands strains above 0.25 at both mentioned strain rates. The proposedmethod is successful in determining the flow curve of the material in sheet forming at high strain rates.

      • Proposing a dynamic stiffness method for the free vibration of bi-directional functionally-graded Timoshenko nanobeams

        Mohammad Gholami,Mojtaba Gorji Azandariani,Ahmed Najat Ahmed,Hamid Abdolmaleki Techno-Press 2023 Advances in nano research Vol.14 No.2

        This paper studies the free vibration behavior of bi-dimensional functionally graded (BFG) nanobeams subjected to arbitrary boundary conditions. According to Eringen's nonlocal theory and Hamilton's principle, the underlying equations of motion have been obtained for BFG nanobeams. Moreover, the variable substitution method is utilized to establish the structure's state-space differential equations, followed by forming the dynamic stiffness matrix based on state-space differential equations. In order to compute the natural frequencies, the current study utilizes the Wittrick-Williams algorithm as a solution technique. Moreover, the nonlinear vibration frequencies calculated by employing the proposed method are compared to the frequencies obtained in previous studies to evaluate the proposed method's performance. Some illustrative numerical examples are also given in order to study the impacts of the nonlocal parameters, material property gradient indices, nanobeam length, and boundary conditions on the BFG nanobeam's frequency. It is found that reducing the nonlocal parameter will usually result in increased vibration frequencies.

      • Micro-finite element and analytical investigations of seismic dampers with steel ring plates

        Ali Mohammad Rousta,Mojtaba Gorji Azandariani 국제구조공학회 2022 Steel and Composite Structures, An International J Vol.43 No.5

        This study investigated the yielding capacity and performance of seismic dampers constructed with steel ring plates using numerical and analytical approaches. This study aims to provide an analytical relationship for estimating the yielding capacity and initial stiffness of steel ring dampers. Using plastic analysis and considering the mechanism of plastic hinge formation, a relation has been obtained for estimating the yielding capacity of steel ring dampers. Extensive parametric studies have been carried out using a nonlinear finite element method to examine the accuracy of the obtained analytical relationships. The parametric studies include investigating the influence of the length, thickness, and diameter of the ring of steel ring dampers. To this end, comprehensive verification studies are performed by comparing the numerical predictions with several reported experimental results to demonstrate the numerical method's reliability and accuracy. Comparison is made between the hysteresis curves, and failure modes predicted numerically or obtained/observed experimentally. Good agreement is observed between the numerical simulations and the analytical predictions for the yielding force and initial stiffness. The difference between the numerical models' ultimate tensile and compressive capacities was observed that average of about 22%, which stems from the performance of the ring-dampers in the tensile and compression zones. The results show that the steel ring-dampers are exhibited high energy dissipation capacity and ductility. The ductility parameters for steel ring-damper between values were 7.5 to 4.1.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼