RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        [Retraction] A Review on the Role of Irisin in Insulin Resistance and Type 2 Diabetes Mellitus

        Gizaw, Mamo,Anandakumar, Pandi,Debela, Tolessa KOREAN PHARMACOPUNCTURE INSTITUTE 2017 Journal of pharmacopuncture Vol.20 No.4

        Irisin is a novel hormone like polypeptide that is cleaved and secreted by an unknown protease from fibronectin type III domain-containing protein 5 (FNDC5), a membrane-spanning protein and which is highly expressed in skeletal muscle, heart, adipose tissue, and liver. Since its discovery in 2012, it has been the subject of many researches due to its potent physiological role. It is believed that understanding irisin's function may be the key to comprehend many diseases and their development. Irisin is a myokine that leads to increased energy expenditure by stimulating the 'browning' of white adipose tissue. In the first description of this hormone, increased levels of circulating irisin, which is cleaved from its precursor fibronectin type III domain-containing protein 5, were associated with improved glucose homeostasis by reducing insulin resistance. Irisin is a powerful messenger, sending the signal to determine the function of specific cells, like skeletal muscle, liver, pancreas, heart, fat and the brain. The action of irisin on different targeted tissues or organs in human being has revealed its physiological functions for promoting health or executing the regulation of variety of metabolic diseases. Numerous studies focus on the association of irisin with metabolic diseases which has gained great interest as a potential new target to combat type 2 diabetes mellitus and insulin resistance. Irisin is found to improve insulin resistance and type 2 diabetes by increasing sensitization of the insulin receptor in skeletal muscle and heart by improving hepatic glucose and lipid metabolism, promoting pancreatic ${\beta}$ cell functions, and transforming white adipose tissue to brown adipose tissue. This review is a thoughtful attempt to summarize the current knowledge of irisin and its effective role in mediating metabolic dysfunctions in insulin resistance and type 2 diabetes mellitus.

      • Responses to environmental stresses : a Review on Insects

        Gashawbeza Gizaw,Jong Kyun Park 한국응용곤충학회 2018 한국응용곤충학회 학술대회논문집 Vol.2018 No.04

        Insects are the most diversified organisms in the world. They are vital to the functioning of the ecosystem and biosphere, and neither of these systems can operate effectively without insect interactions. Insects are regularly subjected to stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Depending on the species and the particular stress affecting it, insect populations respond by increasing or decreasing in numbers. Researchers have assessed the responses of insect populations to various direct and indirect environmental stresses. Some insect populations increase, while others decline. The reponses were determined by the particular environmental stress, the insect species, and he stage at which they were exposed to the stress.

      • KCI등재

        A Review on the Role of Irisin in Insulin Resistance and Type 2 Diabetes Mellitus

        Mamo Gizaw,Pandi Anandakumar,Tolessa Debela 대한약침학회 2017 Journal of pharmacopuncture Vol.20 No.4

        Irisin is a novel hormone like polypeptide that is cleaved and secreted by an unknown protease from fibronectin type III domain-containing protein 5 (FNDC5), a membrane- spanning protein and which is highly expressed in skeletal muscle, heart, adipose tissue, and liver. Since its discovery in 2012, it has been the subject of many researches due to its potent physiological role. It is believed that understanding irisin's function may be the key to comprehend many diseases and their development. Irisin is a myokine that leads to increased energy expenditure by stimulating the 'browning' of white adipose tissue. In the first description of this hormone, increased levels of circulating irisin, which is cleaved from its precursor fibronectin type III domain-containing protein 5, were associated with improved glucose homeostasis by reducing insulin resistance. Irisin is a powerful messenger, sending the signal to determine the function of specific cells, like skeletal muscle, liver, pancreas, heart, fat and the brain. The action of irisin on different targeted tissues or organs in human being has revealed its physiological functions for promoting health or executing the regulation of variety of metabolic diseases. Numerous studies focus on the association of irisin with metabolic diseases which has gained great interest as a potential new target to combat type 2 diabetes mellitus and insulin resistance. Irisin is found to improve insulin resistance and type 2 diabetes by increasing sensitization of the insulin receptor in skeletal muscle and heart by improving hepatic glucose and lipid metabolism, promoting pancreatic β cell functions, and transforming white adipose tissue to brown adipose tissue. This review is a thoughtful attempt to summarize the current knowledge of irisin and its effective role in mediating metabolic dysfunctions in insulin resistance and type 2 diabetes mellitus.

      • KCI등재

        Assessment of respondents’ knowledge, attitudes, and practices toward rabies and associated risk factors in Shone Town, Southern Ethiopia

        Teketel Gizaw Beresa 대한수의학회 2024 Journal of Veterinary Science Vol.25 No.3

        Importance: Rabies is a neglected tropical viral disease most often transmitted through the bite of an infected animal. Objective: This study assessed the level of knowledge, attitudes, and practices of the Shone Ttown community toward rabies. Methods: A survey-based cross-sectional study was conducted in Shone town, Ethiopia,from November 2022 to April 2023. Woreda was selected purposefully, while Kebeles and the study populations were selected by simple random sampling. Four hundred and sixteen respondents were interviewed using a semi-structured questionnaire. Results: All respondents had heard about rabies from different sources, with the majority hearing from informal sources (62%). Approximately 51.9%, 0.7%, and 47.4% of individuals were aware of saliva contact, rabid animal bites, and both as means of transmission, respectively. The survey showed that 64.4% of participants knew the 100% fatal nature of rabies once the clinical signs developed, and 35.6% did not. Approximately 51.4% of respondents agreed that killing stray dogs was an effective method for rabies prevention. In this study, 72.6% of the respondents had contact with pets, and 36.8% of the interviewees had vaccinated their dogs. Only the educational level (p = 0.03) was associated with knowledge of the transmission route. Age (p = 0.04) and educational level (p = 0.01) had a statistically significant association with knowledge of the risk of not vaccinating dogs. Conclusions and Relevance: A lack of formal education in the communities, low levels of education, and the majority of respondents acquiring their knowledge from unofficial sources are important contributors to the low levels of awareness.

      • KCI등재

        Restoring aboveground carbon and biodiversity: a case study from the Nile basin, Ethiopia

        Wolde Mekuria,Simon Langan,Robyn Johnston,Beyene Belay,Dagninet Amare,Tadesse Gashaw,Abeyou Wale,Gizaw Desta,Andrew Noble 한국산림과학회 2015 Forest Science And Technology Vol.11 No.2

        In Ethiopia, exclosures in landscapes have become increasingly important to improving ecosystem services and reversing biodiversity losses. The present study was conducted in Gomit watershed, northern Ethiopia, to: (i) investigate the changes in vegetation composition, diversity and aboveground biomass and carbon following the establishment of exclosures; and (ii) analyse the economic returns of aboveground carbon sequestration and assess the perception of local communities on land degradation and exclosures. A space-for-time substitution approach was used to detect the changes in aboveground carbon, species composition, and diversity. Exclosures of 1-, 2-, 3-, 4-, 5-, and 7-years-old and a communal grazing land were selected. Household surveys, key informant interviews, and a financial analysis were used to assess the perception of local communities and the value of exclosure impacts, respectively. Significant (P D 0.049) differences in species diversity and considerable increases in aboveground carbon (ranged from 0.6 to 4.2 t C ha ¡1), CO2 storage (varied between 2.1 and 15.3 t CO2 ha ¡1), woody species composition, and richness (ranged from five to 28) were observed following the establishment of exclosures. Exclosures generated temporary certified emission reductions (tCER) of 3.4, 2.1, 7.5, 12.6, 12.5, and 15.3 Mg CO2 ha ¡1 after 1, 2, 3, 4, 5, and 7 years, respectively. The net present value (NPV) of the aboveground carbon sequestered in exclosures ranged from US$6.6 to US$37.0 per hectare and increased with exclosure duration. At a watershed level, 51.4 Mg C ha ¡1 can be sequestered, which represents 188.6 Mg CO2 ha ¡1, resulting in tCER of 139.4 Mg CO2 ha ¡1 and NPV of US$478.3 per hectare. This result would suggest that exclosures can potentially improve local communities’ livelihoods beyond rehabilitating degraded lands if carbon stored in exclosures is traded. Communities in the watershed demonstrated that exclosures are effective in restoring degraded lands and they are benefiting from increased fodder production and reduced impacts of soil erosion. However, the respondents are also concerned over the sustainability of exclosure land management, as further expansion of exclosures aggravates degradation of remaining communal grazing lands and causes fuel wood shortages. This suggests that the sustainability of exclosure land management can be attained only if these critical concerns are addressed by a joint effort among government agencies, nongovernmental organizations, and communities.

      • Rates of cavity filling by liquids

        Seo, Dongjin,Schrader, Alex M.,Chen, Szu-Ying,Kaufman, Yair,Cristiani, Thomas R.,Page, Steven H.,Koenig, Peter H.,Gizaw, Yonas,Lee, Dong Woog,Israelachvili, Jacob N. National Academy of Sciences 2018 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF Vol.115 No.32

        <P>Understanding the fundamental wetting behavior of liquids on surfaces with pores or cavities provides insights into the wetting phenomena associated with rough or patterned surfaces, such as skin and fabrics, as well as the development of everyday products such as ointments and paints, and industrial applications such as enhanced oil recovery and pitting during chemical mechanical polishing. We have studied, both experimentally and theoretically, the dynamics of the transitions from the unfilled/partially filled (Cassie-Baxter) wetting state to the fully filled (Wenzel) wetting state on intrinsically hydrophilic surfaces (intrinsic water contact angle <90 degrees, where the Wenzel state is always the thermodynamically favorable state, while a temporary metastable Cassie-Baxter state can also exist) to determine the variables that control the rates of such transitions. We prepared silicon wafers with cylindrical cavities of different geometries and immersed them in bulk water. With bright-field and confocal fluorescence microscopy, we observed the details of, and the rates associated with, water penetration into the cavities from the bulk. We find that unconnected, reentrant cavities (i.e., cavities that open up below the surface) have the slowest cavity-filling rates, while connected or non-reentrant cavities undergo very rapid transitions. Using these unconnected, reentrant cavities, we identified the variables that affect cavity-filling rates: (i) the intrinsic contact angle, (ii) the concentration of dissolved air in the bulk water phase (i.e., aeration), (iii) the liquid volatility that determines the rate of capillary condensation inside the cavities, and (iv) the presence of surfactants.</P>

      • Contact Angle and Adhesion Dynamics and Hysteresis on Molecularly Smooth Chemically Homogeneous Surfaces

        Chen, Szu-Ying,Kaufman, Yair,Schrader, Alex M.,Seo, Dongjin,Lee, Dong Woog,Page, Steven H.,Koenig, Peter H.,Isaacs, Sandra,Gizaw, Yonas,Israelachvili, Jacob N. American Chemical Society 2017 Langmuir Vol.33 No.38

        <P>Measuring truly equilibrium adhesion energies or contact angles to obtain the thermodynamic values is experimentally difficult because it requires loading/unloading or advancing/receding boundaries to be measured at rates that can be slower than 1 nm/s. We have measured advancing-receding contact angles and loading-unloading adhesion energies for various systems and geometries involving molecularly smooth and chemically homogeneous surfaces moving at different but steady velocities in both directions, ±<I>V</I>, focusing on the thermodynamic limit of ±<I>V</I> → 0. We have used the Bell Theory (1978) to derive expressions for the dynamic (velocity-dependent) adhesion energies and contact angles suitable for both (i) dynamic adhesion measurements using the classic Johnson-Kendall-Roberts (JKR, 1971) theory of “contact mechanics” and (ii) dynamic contact angle hysteresis measurements of both rolling droplets and syringe-controlled (sessile) droplets on various surfaces. We present our results for systems that exhibited both steady and varying velocities from <I>V</I> ≈ 10 mm/s to 1 nm/s, where in all cases but one, the advancing (<I>V</I> > 0) and receding (<I>V</I> < 0) adhesion energies and/or contact angles converged toward the same theoretical (thermodynamic) values as <I>V</I> → 0. Our equations for the dynamic contact angles are similar to the classic equations of Blake & Haynes (1969) and fitted the experimental adhesion data equally well over the range of velocities studied, although with somewhat different fitting parameters for the characteristic molecular <I>length/dimension</I> or <I>area</I> and characteristic bond formation/rupture <I>lifetime</I> or <I>velocity</I>. Our theoretical and experimental methods and results unify previous kinetic theories of adhesion and contact angle hysteresis and offer new experimental methods for testing kinetic models in the thermodynamic, <I>quasi-static</I>, limit. Our analyses are limited to kinetic effects only, and we conclude that hydrodynamic, i.e., viscous, and inertial effects do not play a role at the interfacial velocities of our experiments, i.e., <I>V</I> < (1-10) mm/s (for water and hexadecane, but for viscous polymers it may be different), consistent with previously reported studies.</P> [FIG OMISSION]</BR>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼