RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Application of galactinol to tomato enhances tolerance to cold and heat stresses

        Liu Yudong,Zhang Li,Ma Jian,Meng Sida,Pang Chunpeng,Zhao Xiaomeng,Zhang Huidong,Wang Shou,Xu Tao,He Yi,Liu Yufeng,Qi Mingfang 한국원예학회 2022 Horticulture, Environment, and Biotechnology Vol.63 No.3

        Galactinol, a galactosyl donor, is the key substrate in raffinose family oligosaccharide (RFO) biosynthesis pathways. Many studies proved that galactinol also regulates some defense-related genes to be transcribed as a sugar signal under biotic and abiotic stresses. There are four galactinol synthase (SlGolS) genes in tomato. In this study, SlGolS1, SlGolS2, and SlGolS4 responded to cold stress, especially SlGolS1 stems treated for 12 h and SlGolS4 stems treated for 24 h. Under heat stress, the expression levels of SlGolS1, SlGolS2, and SlGolS3, especially SlGolS1 and SlGolS2, increased in leaves, roots, and stems. When expressed in E. coli cells, SlGolS2 and SlGolS4 enhanced cold tolerance, whereas SlGolS1 and SlGolS3 improved heat tolerance. These results suggested that SlGolS family members played different roles in tolerance to cold and heat stresses. In addition, the application of galactinol or galactinol + α-galactosidase inhibitor (DGJ) improved the cold and heat tolerances of tomato plants, whereas the single application of DGJ had no effect. Interestingly, the applications of DGJ, galactinol, and galactinol + DGJ also affected the expression levels of SlRS, SlSTS, and SlAGAL under cold and heat stresses. These findings indicated that galactinol was involved in the biosynthesis pathways of RFOs as a galactosyl donor and regulated the expression levels of RFO biosynthesis and breakdown-related genes as a sugar signal under cold and heat stresses.

      • KCI등재

        Centrifuge Model Test on Anti-dip Rock Slopes with Unequal Thicknesses Subjected to Flexural Toppling Failure

        Runqing Wang,Wei Zhao,Tingkai Nian,Chunpeng Liu,Hao Wu 대한토목학회 2022 KSCE JOURNAL OF CIVIL ENGINEERING Vol.26 No.6

        Flexural toppling failure of anti-dip rock slopes (ADRSs) with layers of equal thicknesses has been investigated by many researchers, however, in natural slopes, rock layers in ADRSs are often of unequal thicknesses. To analyze this condition, six slope models were manufactured with glass plates and tests were conducted in a geotechnical drum centrifuge. In these experiments, deformation and interlayer force characteristics were obtained with cameras and film pressure sensors. The centrifuge test results show that the failure process can be divided into three stages: failure of the slope toe, development of fractures and failure of the slope. Initial toe failure has little effect on the stability of the upper rock mass. Through centrifuge test results, it is determined that slopes with only thick layers therein can be used in the evaluation of the stability of slopes with layers of unequal thicknesses. This is because thicker strata have a greater bending stiffness and bending strength than thin strata, thus influencing slope deformation and stability.

      • KCI등재

        Enhanced electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode material co-coated by graphene/TiO2

        Dang Mengyue,Li Ying,Xu Chaoxiang,He Yulin,Yu Chunpeng,Liu Wenbo,Jin Hongming,Zhu Mingyuan,Zhang Jiujun,Li Wenxian 한국물리학회 2021 Current Applied Physics Vol.32 No.-

        The electrochemical performances of LiNi0.5Co0.2Mn0.3O2 (NCM523) layered cathode material, such as poor rate capacity and cycling stability caused by undesirable intrinsic conductivity and low rate of lithium ion transportation, are not fairly good especially at elevated rate and cut-off voltage. To improve these properties, in this study, the co-coating layer of graphene and TiO2 was constructed on NCM523 surface. The graphene/TiO2 coating layer could effectively prevent hydrofluoric acid (HF) attacks, suppress the side reaction, accelerate the lithium ion diffusion and facilitate the electron migration. The enhancement of cycle performance and rate capacity was contributed to the uniform co-modified surface, interacting each other and thus exhibiting synergistic effects.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼