RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Simulation of 4H-SiC MESFET for High Power and High Frequency Response

        Chattopadhyay, S.N.,Pandey, P.,Overton, C.B.,Krishnamoorthy, S.,Leong, S.K. The Institute of Electronics and Information Engin 2008 Journal of semiconductor technology and science Vol.8 No.3

        In this paper, we report an analytical modeling and 2-D Synopsys Sentaurus TCAD simulation of ion implanted silicon carbide MESFETs. The model has been developed to obtain the threshold voltage, drain-source current, intrinsic parameters such as, gate capacitance, drain-source resistance and transconductance considering different fabrication parameters such as ion dose, ion energy, ion range and annealing effect parameters. The model is useful in determining the ion implantation fabrication parameters from the optimization of the active implanted channel thickness for different ion doses resulting in the desired pinch off voltage needed for high drain current and high breakdown voltage. The drain current of approximately 10 A obtained from the analytical model agrees well with that of the Synopsys Sentaurus TCAD simulation and the breakdown voltage approximately 85 V obtained from the TCAD simulation agrees well with published experimental results. The gate-to-source capacitance and gate-to-drain capacitance, drain-source resistance and trans-conductance were studied to understand the device frequency response. Cut off and maximum frequencies of approximately 10 GHz and 29 GHz respectively were obtained from Sentaurus TCAD and verified by the Smith's chart.

      • KCI등재

        Electrical and magnetoelectronic properties of La_0.7Sr_0.3MnO_3/SiO_2/p-Si heterostructure for spintronics application

        S. Chattopadhyay,T.K. Nath 한국물리학회 2011 Current Applied Physics Vol.11 No.5

        An experimental study of p-silicon (Si)/La_0.7Sr_0.3MnO_3 (LSMO) junction in which the LSMO and silicon are separated by a thin interfacial silicon dioxide (SiO_2) layer has been fabricated. Two type of SiO_2 layer has been discussed here ― one is native oxide and another one is thermal oxide. The thermal SiO_2 film is grown on Si by annealing it at 800 ℃ in oxygen atmosphere. The LSMO film of about 64 nm thick has been grown on SiO_2 at 800 ℃ substrate temperature in 10^-1 mbar oxygen pressure by Pulsed Laser Deposition technique. The LSMO/SiO_2/Si heterostructure exhibits MOS diode-like behavior with all type of possible current flow mechanisms (such as thermionic emission, tunneling, recombination degeneration,etc.) through the heterojunction. The high field Fowler-Nordheim [ln(J_FN/E^2) vs 1/E] plot at different temperatures confirms that the dominating transport mechanism across the heterostructure is tunneling. The junction resistance changes under magnetic field and the junction magnetoresistance is found to be ∼31% with 1T applied magnetic field at room temperature at a bias voltage of 2.2 V. The capacitor-voltage characteristics confirm the presence of trap charges.

      • SCIESCOPUSKCI등재

        Optically Controlled Silicon MESFET Modeling Considering Diffusion Process

        Chattopadhyay, S.N.,Motoyama, N.,Rudra, A.,Sharma, A.,Sriram, S.,Overton, C.B.,Pandey, P. The Institute of Electronics and Information Engin 2007 Journal of semiconductor technology and science Vol.7 No.3

        An analytical model is proposed for an optically controlled Metal Semiconductor Field Effect Transistor (MESFET), known as Optical Field Effect Transistor (OPFET) considering the diffusion fabrication process. The electrical parameters such as threshold voltage, drain-source current, gate capacitances and switching response have been determined for the dark and various illuminated conditions. The Photovoltaic effect due to photogenerated carriers under illumination is shown to modulate the channel cross-section, which in turn significantly changes the threshold voltage, drainsource current, the gate capacitances and the device switching speed. The threshold voltage $V_T$ is reduced under optical illumination condition, which leads the device to change the device property from enhancement mode to depletion mode depending on photon impurity flux density. The resulting I-V characteristics show that the drain-source current IDS for different gate-source voltage $V_{gs}$ is significantly increased with optical illumination for photon flux densities of ${\Phi}=10^{15}\;and\;10^{17}/cm^2s$ compared to the dark condition. Further more, the drain-source current as a function of drain-source voltage $V_{DS}$ is evaluated to find the I-V characteristics for various pinch-off voltages $V_P$ for optimization of impurity flux density $Q_{Diff}$ by diffusion process. The resulting I-V characteristics also show that the diffusion process introduces less process-induced damage compared to ion implantation, which suffers from current reduction due to a large number of defects introduced by the ion implantation process. Further the results show significant increase in gate-source capacitance $C_{gs}$ and gate-drain capacitance $C_{gd}$ for optical illuminations, where the photo-induced voltage has a significant role on gate capacitances. The switching time ${\tau}$ of the OPFET device is computed for dark and illumination conditions. The switching time ${\tau}$ is greatly reduced by optical illumination and is also a function of device active layer thickness and corresponding impurity flux density $Q_{Diff}$. Thus it is shown that the diffusion process shows great potential for improvement of optoelectronic devices in quantum efficiency and other performance areas.

      • KCI등재

        NONSELECTIVE HARVESTING OF A PREY-PREDATOR COMMUNITY WITH INFECTED PREY

        Chattopadhyay, J.,Ghosal, G.,Chaudhuri, K.S. 한국전산응용수학회 1999 Journal of applied mathematics & informatics Vol.6 No.3

        The present paper deals with the problem of nonselective harvesting in a partly infected prey and predator system in which both the susceptible prey and the predator follow the law of logistic growth and some preys avoid predation by hiding. The dynamical behaviour of the system has been studied in both the local and global sense. The optimal policy of exploitation has been derived by using Pontraygin's maximal principle. Numerical analysis and computer simulation of the results have been performed to investigate the golbal properties of the system.

      • SCIESCOPUSKCI등재

        Optically Controlled Silicon MESFET Fabrication and Characterizations for Optical Modulator/Demodulator

        Chattopadhyay, S.N.,Overton, C.B.,Vetter, S.,Azadeh, M.,Olson, B.H.,Naga, N. El The Institute of Electronics and Information Engin 2010 Journal of semiconductor technology and science Vol.10 No.3

        An optically controlled silicon MESFET (OPFET) was fabricated by diffusion process to enhance the quantum efficiency, which is the most important optoelectronic device performance usually affected by ion implantation process due to large number of process induced defects. The desired impurity distribution profile and the junction depth were obtained solely with diffusion, and etching processes monitored by atomic force microscope, spreading resistance profiling and C-V measurements. With this approach fabrication induced defects are reduced, leading to significantly improved performance. The fabricated OPFET devices showed proper I-V characteristics with desired pinch-off voltage and threshold voltage for normally-on devices. The peak photoresponsivity was obtained at 620 nm wavelength and the extracted external quantum efficiency from the photoresponse plot was found to be approximately 87.9%. This result is evidence of enhancement of device quantum efficiency fabricated by the diffusion process. It also supports the fact that the diffusion process is an extremely suitable process for fabrication of high performance optoelectronic devices. The maximum gain of OPFET at optical modulated signal was obtained at the frequency of 1 MHz with rise time and fall time approximately of 480 nS. The extracted transconductance shows the possible potential of device speed performance improvements for shorter gate length. The results support the use of a diffusion process for fabrication of high performance optoelectronic devices.

      • SCIESCOPUSKCI등재

        Optically Controlled Silicon MESFET Modeling Considering Diffusion Process

        S. N. Chattopadhyay,N. Motoyama,A. Rudra,A. Sharma,S. Sriram,C. B. Overton,P. Pandey 대한전자공학회 2007 Journal of semiconductor technology and science Vol.7 No.3

        An analytical model is proposed for an optically controlled Metal Semiconductor Field Effect Transistor (MESFET), known as Optical Field Effect Transistor (OPFET) considering the diffusion fabrication process. The electrical parameters such as threshold voltage, drain-source current, gate capacitances and switching response have been determined for the dark and various illuminated conditions. The Photovoltaic effect due to photogenerated carriers under illumination is shown to modulate the channel cross-section, which in turn significantly changes the threshold voltage, drainsource current, the gate capacitances and the device switching speed. The threshold voltage VT is reduced under optical illumination condition, which leads the device to change the device property from enhancement mode to depletion mode depending on photon impurity flux density. The resulting I-V characteristics show that the drain-source current IDS for different gate-source voltage Vgs is significantly increased with optical illumination for photon flux densities of Φ = 10<SUP>15</SUP> and 10<SUP>17</SUP> /㎠s compared to the dark condition. Further more, the drain-source current as a function of drain-source voltage VDS is evaluated to find the I-V characteristics for various pinch-off voltages VP for optimization of impurity flux density QDiff by diffusion process. The resulting I-V characteristics also show that the diffusion process introduces less process-induced damage compared to ion implantation, which suffers from current reduction due to a large number of defects introduced by the ion implantation process. Further the results show significant increase in gate-source capacitance Cgs and gate-drain capacitance Cgd for optical illuminations, where the photo-induced voltage has a significant role on gate capacitances. The switching time τ of the OPFET device is computed for dark and illumination conditions. The switching time τ is greatly reduced by optical illumination and is also a function of device active layer thickness and corresponding impurity flux density QDiff. Thus it is shown that the diffusion process shows great potential for improvement of optoelectronic devices in quantum efficiency and other performance areas.

      • SCIESCOPUSKCI등재

        Simulation of 4H-SiC MESFET for High Power and High Frequency Response

        S. N. Chattopadhyay,P. Pandey,C. B. Overton,S. Krishnamoorthy,S.K. Leong 대한전자공학회 2008 Journal of semiconductor technology and science Vol.8 No.3

        In this paper, we report an analytical modeling and 2-D Synopsys Sentaurus TCAD simulation of ion implanted silicon carbide MESFETs. The model has been developed to obtain the threshold voltage, drain-source current, intrinsic parameters such as, gate capacitance, drain-source resistance and transconductance considering different fabrication parameters such as ion dose, ion energy, ion range and annealing effect parameters. The model is useful in determining the ion implantation fabrication parameters from the optimization of the active implanted channel thickness for different ion doses resulting in the desired pinch off voltage needed for high drain current and high breakdown voltage. The drain current of approximately 10 A obtained from the analytical model agrees well with that of the Synopsys Sentaurus TCAD simulation and the breakdown voltage approximately 85 V obtained from the TCAD simulation agrees well with published experimental results. The gate-to-source capacitance and gate-todrain capacitance, drain-source resistance and transconductance were studied to understand the device frequency response. Cut off and maximum frequencies of approximately 10 ㎓ and 29 ㎓ respectively were obtained from Sentaurus TCAD and verified by the Smith’s chart.

      • KCI등재후보

        $\alpha$- and $\beta$-Amylase Isozyme Expresser Native Proteins in Tropical Silkworm Bombyx mori L.

        Chattopadhyay, G.K.,Verma, A.K.,Sengupta, A.K.,Das, S.K.,Urs, S.Raje Korean Society of Sericultural Science 2004 International Journal of Industrial Entomology Vol.8 No.2

        Amylase isozyme based three multivoltine viz., N+p, Np, N+ $p^{cho}$ and two bivoltine-D6+p, D6p syngenic lines (Syn. L) were developed from germplasm (GP) stocks Nistari (N) and D6 respectively. haemolymph isozyme pattern at pH 7.0 and 8.5 depicted a total 11 number (Am $y_{1 to 6}$ at pH 7.0 and Am $y^{l to 5}$ at pH 8.5) of native proteins (NP) of various sizes are amylase isozyme expressers. Among eleven NPs, two NPs of 770 kDa (Am $y^{6}$ at pH 7.0) and 376 kDa (Am $y^3$ at pH 8.5) are $\alpha$-amylase expressers and remaining NPs of 370, 364, 350, 329 and 274 kDa at pH 7.0 and 206, 292, 416, 725 kDa at pH 8.5 are $\beta$-amylase expressers. Accordingly, digestive juice amylase isozyme pattern at aforesaid pH also depicted a total number of 10 NPs (Am $y^{1 to 5}$) at each pH 7.0 and 8.5 are amylase expressers of which NP of 387 kDa (Am $y^4$ at pH 7.0) and 780 kDa (Am $y^{5}$ at pH 8.5) are a-amylase expresser. Remaining NPs of 338,297 & 216 kDa at pH 7.0 and 370, 341, 329 &302 kDa at pH 8.5 are $\beta$-amylase expresser. Recurrent backcross lines (RBL) viz., N+pRBL and NpRBL were developed through introgression of high shell weight character (a multigenic trait) to be used further for congenic line (Con. L) development and to understand any association with introgressed character. Isozyme pattern in haemolymph of RBLs depicted only one $\alpha$-amylase of 770 kDa at pH 7.0 and 376 kDa at pH 8.0 with three and four respective $\beta$-amylase bands but in bivoltine lines numbers of $\beta$-amylase bands vary between 1 to 2 at aforesaid pH. Variability was also observed in digestive juice of multivolitine and its RBLs but bivoltine lines express null activity at both pH except appearance of one very week $\alpha$-amylase band D6+p at pH 8.5. Overall study suggests that not a single NP at both pH is common for expression of any band of amylase isozyme i.e., a totally different set of proteins are the amylase isozyme expresser at specific pH and no molecular factor of amylase is associated in developed RBLs which showed improvement on survival, single cocoon shell weight (SCSW) and single filament length over receptor parents.s.s.s.

      • KCI등재

        Optically Controlled Silicon MESFET Fabrication and Characterizations for Optical Modulator/Demodulator

        S.N. Chattopadhyay,C. B. Overton,S. Vetter,M. Azadeh,B. H. Olson,N. El Naga 대한전자공학회 2010 Journal of semiconductor technology and science Vol.10 No.3

        An optically controlled silicon MESFET (OPFET) was fabricated by diffusion process to enhance the quantum efficiency, which is the most important optoelectronic device performance usually affected by ion implantation process due to large number of process induced defects. The desired impurity distribution profile and the junction depth were obtained solely with diffusion, and etching processes monitored by atomic force microscope, spreading resistance profiling and C-V measurements. With this approach fabrication induced defects are reduced, leading to significantly improved performance. The fabricated OPFET devices showed proper I-V characteristics with desired pinch-off voltage and threshold voltage for normally-on devices. The peak photoresponsivity was obtained at 620 ㎚ wavelength and the extracted external quantum efficiency from the photoresponse plot was found to be approximately 87.9%. This result is evidence of enhancement of device quantum efficiency fabricated by the diffusion process. It also supports the fact that the diffusion process is an extremely suitable process for fabrication of high performance optoelectronic devices. The maximum gain of OPFET at optical modulated signal was obtained at the frequency of 1 MHz with rise time and fall time approximately of 480 nS. The extracted transconductance shows the possible potential of device speed performance improvements for shorter gate length. The results support the use of a diffusion process for fabrication of high performance optoelectronic devices.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼