RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Evolution of plant Ash1 SET genes: structural divergence and functional differentiation

        Xinyu Zhu,Baohua Wang,Xianzhao Kan,Caoyi Chen,Chunmei Yu 한국유전학회 2013 Genes & Genomics Vol.35 No.4

        Plant Ash1 SET proteins are involved in H3K36methylation, and play a key role in plant reproductive development. Genes encoding Ash1 SET proteins constitute a multigene family in which the copy number varies among plant species and functional divergence appears to have occurred repeatedly. To investigate the evolutionary history and functional differentiation of the Ash1 SET gene family,we made a comprehensive evolutionary analysis of this gene family from eleven major representatives of green plants. A novel deep sister relationship grouping previously resolved II-1 and II-2 orthologous groups was identified. The absence of AWS domain in the group II-2 suggests that the independent losses of AWS domain have occurred during evolution. A diversity of gene structures in plant Ash1 SET gene family have been presented since the divergence of Physcomitrella patens (moss) from the other land plants. A small proportion of codons in SET domain regions were detected to be under positive selection along the branches ancestral to land plant and angiosperms, which may have allowed changes of substrate specificity among different evolutionary groups while maintaining the primary function of SET domains. Our predictive subcellular localization and comparative anatomical meta-expression analyses can assort with the structural divergences of Ash1SET proteins.

      • CFD simulation of vortex-induced vibration of free-standing hybrid riser

        Cao, Yi,Chen, Hamn-Ching Techno-Press 2017 Ocean systems engineering Vol.7 No.3

        This paper presents 3D numerical simulations of a Free Standing Hybrid Riser under Vortex Induced Vibration, with prescribed motion on the top to replace the motion of the buoyancy can. The model is calculated using a fully implicit discretization scheme. The flow field around the riser is computed by solving the Navier-Stokes equations numerically. The fluid domain is discretized using the overset grid approach. Grid points in near-wall regions of riser are of high resolution, while far field flow is in relatively coarse grid. Fluid-structure interaction is accomplished by communication between fluid solver and riser motion solver. Simulation is based on previous experimental data. Two cases are studied with different current speeds, where the motion of the buoyancy can is approximated to a 'banana' shape. A fully three-dimensional CFD approach for VIV simulation for a top side moving Riser has been presented. This paper also presents a simulation of a riser connected to a platform under harmonic regular waves.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼