RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Feedforward actuator controller development using the backward-difference method for real-time hybrid simulation

        Brian M. Phillips,Shuta Takada,Yozo Fujino,B.F. Spencer, Jr 국제구조공학회 2014 Smart Structures and Systems, An International Jou Vol.14 No.6

        Real-time hybrid simulation (RTHS) has emerged as an important tool for testing large and complex structures with a focus on rate-dependent specimen behavior. Due to the real-time constraints, accurate dynamic control of servo-hydraulic actuators is required. These actuators are necessary to realize the desired displacements of the specimen, however they introduce unwanted dynamics into the RTHS loop. Model-based actuator control strategies are based on linearized models of the servo-hydraulic system, where the controller is taken as the model inverse to effectively cancel out the servo-hydraulic dynamics (i.e., model-based feedforward control). An accurate model of a servo-hydraulic system generally contains more poles than zeros, leading to an improper inverse (i.e., more zeros than poles). Rather than introduce additional poles to create a proper inverse controller, the higher order derivatives necessary for implementing the improper inverse can be calculated from available information. The backward-difference method is proposed as an alternative to discretize an improper continuous time model for use as a feedforward controller in RTHS. This method is flexible in that derivatives of any order can be explicitly calculated such that controllers can be developed for models of any order. Using model-based feedforward control with the backward-difference method, accurate actuator control and stable RTHS are demonstrated using a nine-story steel building model implemented with an MR damper.

      • SCIESCOPUS

        Feedforward actuator controller development using the backward-difference method for real-time hybrid simulation

        Phillips, Brian M.,Takada, Shuta,Spencer, B.F. Jr.,Fujino, Yozo Techno-Press 2014 Smart Structures and Systems, An International Jou Vol.14 No.6

        Real-time hybrid simulation (RTHS) has emerged as an important tool for testing large and complex structures with a focus on rate-dependent specimen behavior. Due to the real-time constraints, accurate dynamic control of servo-hydraulic actuators is required. These actuators are necessary to realize the desired displacements of the specimen, however they introduce unwanted dynamics into the RTHS loop. Model-based actuator control strategies are based on linearized models of the servo-hydraulic system, where the controller is taken as the model inverse to effectively cancel out the servo-hydraulic dynamics (i.e., model-based feedforward control). An accurate model of a servo-hydraulic system generally contains more poles than zeros, leading to an improper inverse (i.e., more zeros than poles). Rather than introduce additional poles to create a proper inverse controller, the higher order derivatives necessary for implementing the improper inverse can be calculated from available information. The backward-difference method is proposed as an alternative to discretize an improper continuous time model for use as a feedforward controller in RTHS. This method is flexible in that derivatives of any order can be explicitly calculated such that controllers can be developed for models of any order. Using model-based feedforward control with the backward-difference method, accurate actuator control and stable RTHS are demonstrated using a nine-story steel building model implemented with an MR damper.

      • KCI등재

        Discussion of “Experimental study on the pipe-soil interface under the influence of pipe jacking stagnation time” by Tianliang Li, Wen Zhao, Run Liu, Jianyong Han and Cheng Cheng

        Bryan A. McCabe,Brian B. Sheil,Bryn M. Phillips,Kevin G. O’Dwyer 대한토목학회 2022 KSCE JOURNAL OF CIVIL ENGINEERING Vol.26 No.8

        Jacking forces which exceed expectations constitute a risk for tunnelling contractors. One scenario in which high forces may arise is when jacking of lubricated pipes is temporarily halted, which was considered by Li et al. using a programme of direct shear testing. While recognising the importance of the topic to the profession, the purpose of this Discussion piece is to highlight some of the limitations of the study.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼