RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Identification and evaluation of cracks in electrostatically actuated resonant gas sensors using Harris Hawk / Nelder Mead and perturbation methods

        Behnam Firouzi,Ahmad Abbasi,Polat Sendur 국제구조공학회 2021 Smart Structures and Systems, An International Jou Vol.28 No.1

        In this paper we study the static deflection, natural frequency, primary resonance of an electrostatically actuated cracked gas sensor. Besides, a novel hybrid metaheuristic algorithm is proposed to detect the location and depth of possible crack on the microcantilever systems. The gas sensor configuration consists of a microcantilever with a rigid plate attached to its end. The nonlinear effects of the electrostatic force and fringing field are taken into account in the mathematical model. The crack is represented by a rotational spring. In the first part, the effect of crack on the static and dynamic pull-in instability are studied. The equations of motion are solved by the application of the perturbation methods. Next, an inverse problem is formulated to predict the location and depth of the crack in the gas sensor. For that purpose, the weighted squared difference of the analytical and predicted frequency response is considered as the objective function. The location and depth of the crack in the microsystem are determined using the hybrid Harris Hawk and Nelder Mead optimization algorithms. The accuracy and efficiency of the proposed algorithm are compared with the HHO, DA, GOA, and WOA algorithms. Taguchi design of experiments method is used in order to tune the parameters of optimization algorithms systematically. It is shown that the proposed algorithm can predict the exact location and depth of the open-edge crack on an electrostatically actuated microbeam with proof mass.

      • SCOPUSKCI등재

        A computer-aided diagnostic system for kidney disease

        ( Farzad Firouzi Jahantigh ),( Behnam Malmir ),( Behzad Aslani Avilaq ) 대한신장학회 2017 Kidney Research and Clinical Practice Vol.36 No.1

        Background: Disease diagnosis is complicated since patients may demonstrate similar symptoms but physician may diagnose different diseases. There are a few number of investigations aimed to create a fuzzy expert system, as a computer aided system for disease diagnosis. Methods: In this research, a cross-sectional descriptive study conducted in a kidney clinic in Tehran, Iran in 2012. Medical diagnosis fuzzy rules applied, and a set of symptoms related to the set of considered diseases defined. The input case to be diagnosed defined by assigning a fuzzy value to each symptom and then three physicians asked about each suspected diseases. Then comments of those three physicians summarized for each disease. The fuzzy inference applied to obtain a decision fuzzy set for each disease, and crisp decision values attained to determine the certainty of existence for each disease. Results: Results indicated that, in the diagnosis of seven cases of kidney disease by examining 21 indicators using fuzzy expert system, kidney stone disease with 63% certainty was the most probable, renal tubular was at the lowest level with 15%, and other kidney diseases were at the other levels. The most remarkable finding of this study was that results of kidney disease diagnosis (e.g., kidney stone) via fuzzy expert system were fully compatible with those of kidney physicians. Conclusion: The proposed fuzzy expert system is a valid, reliable, and flexible instrument to diagnose several typical input cases. The developed system decreases the effort of initial physical checking and manual feeding of input symptoms.

      • Improving performance of piezoelectric energy harvester under electrostatic actuation using cavity

        Delalat, Kourosh,Zamanian, Mehdi,Firouzi, Behnam Techno-Press 2021 Coupled systems mechanics Vol.10 No.5

        This study aims to investigate the effect of cavity on electric energy harvesting from cantilever beam vibrations under electrostatic actuation. Electrostatic actuation is created by a layer of radioisotope materials that is placed on the opposite side of the beam emitting electrons. When the beam is charged, the electrostatic force is generated between the beam and the opposite plate and pulls the beam towards itself. After the beam strikes the radioisotope, it is electrically discharged and then released. The piezoelectric layer converts the released microbeam vibration into electricity. The equations of motion coupled with the electrical effects of the piezoelectric layer are extracted using Hamilton's principle and Gauss's law. The equations are discretized by Galerkin method. The exact mode shape of the cantilever beam with the piezoelectric layer is employed as the comparison function. By identifying the relations governing the system, the output voltage and consequently the amount of harvested electrical energy are obtained using various parameters such as thickness and position of the cavity and system electrical resistance. The results indicates that creating cavity has a significant effect on the energy harvesting.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼